Intrinsic paramagnetic Meissner effect due to s-wave odd-frequency superconductivity

A. Di Bernardo, Z. Salman, X. L. Wang, M. Amado, M. Egilmez, M. G. Flokstra, A. Suter, S. L. Lee, J. H. Zhao, T. Prokscha, E. Morenzoni, M. G. Blamire, J. Linder, J. W. A. Robinson*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

70 Citations (Scopus)


In 1933, Meissner and Ochsenfeld reported the expulsion of magnetic flux-the diamagnetic Meissner effect-from the interior of superconducting lead. This discovery was crucial in formulating the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. In exotic superconducting systems BCS theory does not strictly apply. A classical example is a superconductor-magnet hybrid system where magnetic ordering breaks time-reversal symmetry of the superconducting condensate and results in the stabilization of an odd-frequency superconducting state. It has been predicted that under appropriate conditions, odd-frequency superconductivity should manifest in the Meissner state as fluctuations in the sign of the magnetic susceptibility, meaning that the superconductivity can either repel (diamagnetic) or attract (paramagnetic) external magnetic flux. Here, we report local probe measurements of faint magnetic fields in a Au=Ho=Nb trilayer system using low-energy muons, where antiferromagnetic Ho (4.5 nm) breaks time-reversal symmetry of the proximity-induced pair correlations in Au. From depth-resolved measurements below the superconducting transition of Nb, we observe a local enhancement of the magnetic field in Au that exceeds the externally applied field, thus proving the existence of an intrinsic paramagnetic Meissner effect arising from an odd-frequency superconducting state.
Original languageEnglish
Article number041021
Number of pages7
JournalPhysical Review X
Issue number4
Publication statusPublished - 6 Nov 2015


  • Ferromagnet structures
  • Temperature
  • Enhancement
  • Muons


Dive into the research topics of 'Intrinsic paramagnetic Meissner effect due to s-wave odd-frequency superconductivity'. Together they form a unique fingerprint.

Cite this