Abstract
The establishment of intimate electrode/electrolyte interface is very important in solid oxide fuel cells (SOFCs), because it plays a critical role in the overall cell performance and durability. In this study, Mn segregation and interface formation between directly assembled La0.8Sr0.2MnO3 (LSM) electrode and yttrium-stabilized zirconia (YSZ) or gadolinium-doped ceria (GDC) electrolytes are studied using combined focused ion beam and scanning transmission electron microscopy (FIB-STEM). In the case of LSM/YSZ and LSM/GDC electrodes, a significant reduction in the electrode ohmic resistance is observed after cathodic polarization at 900 °C and 500 mA cm−2, indicating the formation of an intimate interface. However, LSM particles start to disintegrate at the electrode/electrolyte interface with the increase of polarization time in the case of LSM/YSZ electrode. On the other hand, the LSM/GDC interface is very stable with negligible microstructure change at the interface. Mn segregation from the LSM perovskite structure is identified under the influence of polarization in both LSM/YSZ and LSM/GDC electrodes. The results demonstrate that nature of the electrolyte plays a critical role in the electrochemical activity, microstructure, morphology and stability of LSM/electrolyte interface under SOFC operation conditions.
Original language | English |
---|---|
Pages (from-to) | 176-188 |
Number of pages | 13 |
Journal | Solid State Ionics |
Volume | 325 |
Early online date | 31 Aug 2018 |
DOIs | |
Publication status | Published - 1 Nov 2018 |
Keywords
- Solid oxide fuel cells
- Direct assembly
- LSM cathodes
- YSZ and GDC electrolyte
- Interface
- Mn segregation