Abstract
Where 2A oligopeptide sequences occur within ORFs, the formation of the glycyl-prolyl peptide bond at the C-terminus of (each) 2A does not occur. This property can be used to concatenate sequences encoding several proteins into a single ORF: each component of such an artificial polyprotein is generated as a discrete translation product. 2A and '2A-like' sequences have become widely utilised in biotechnology and biomedicine. Individual proteins may also be co- and post-translationally targeted to a variety of sub-cellular sites. In the case of polyproteins bearing N-terminal signal sequences we observed, however, that the protein downstream of 2A (no signal) was translocated into the endoplasmic reticulum (ER). We interpreted these data as a form of 'slip-stream' translocation: downstream proteins, without signals, were translocated through a translocon pore already formed by the signal sequence at the N-terminus of the polyprotein. Here we show this effect is, in fact, due to inhibition of the 2A reaction (formation of fusion protein) by the C-terminal region (immediately upstream of 2A) of some proteins when translocated into the ER. Solutions to this problem include the use of longer 2As (with a favourable upstream context) or modifying the order of proteins comprising polyproteins.
Original language | English |
---|---|
Pages (from-to) | 213-223 |
Number of pages | 11 |
Journal | Biotechnology Journal |
Volume | 5 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2010 |
Keywords
- 2A
- Polyprotein
- Skipping
- Slipstream
- Targeting
- MOUTH-DISEASE VIRUS
- EMBRYONIC STEM-CELLS
- RIBOSOME-CHANNEL COMPLEX
- PREPRO-ALPHA-FACTOR
- OPEN READING FRAME
- HUMAN T-CELLS
- ENDOPLASMIC-RETICULUM
- PROTEIN TRANSLOCATION
- THERAPEUTIC LEVELS
- 2A-LIKE SEQUENCES