Inferring transcriptional logic from multiple dynamic experiments

Giorgos Minas, Dafyd J. Jenkins, David A. Rand, Bärbel Finkenstädt

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


Motivation: The availability of more data of dynamic gene expression under multiple experimental conditions provides new information that makes the key goal of identifying not only the transcriptional regulators of a gene but also the underlying logical structure attainable.

Results: We propose a novel method for inferring transcriptional regulation using a simple, yet biologically interpretable, model to find the logic by which a set of candidate genes and their associated transcription factors (TFs) regulate the transcriptional process of a gene of interest. Our dynamic model links the mRNA transcription rate of the target gene to the activation states of the TFs assuming that these interactions are consistent across multiple experiments and over time. A trans-dimensional Markov Chain Monte Carlo (MCMC) algorithm is used to efficiently sample the regulatory logic under different combinations of parents and rank the estimated models by their posterior probabilities. We demonstrate and compare our methodology with other methods using simulation examples and apply it to a study of transcriptional regulation of selected target genes of Arabidopsis Thaliana from microarray time series data obtained under multiple biotic stresses. We show that our method is able to detect complex regulatory interactions that are consistent under multiple experimental conditions.

Availability and implementation: Programs are written in MATLAB and Statistics Toolbox Release 2016b, The MathWorks, Inc., Natick, Massachusetts, United States and are available on GitHub and at

Original languageEnglish
Pages (from-to)3437-3444
Number of pages8
Issue number21
Early online date28 Jun 2017
Publication statusPublished - 1 Nov 2017


Dive into the research topics of 'Inferring transcriptional logic from multiple dynamic experiments'. Together they form a unique fingerprint.

Cite this