TY - JOUR
T1 - Induced subgraphs of zero-divisor graphs
AU - Arunkumar, G
AU - Cameron, Peter J.
AU - Kavaskar, T.
AU - Chelvam, T. Tamizh
N1 - Funding: Peter J. Cameron acknowledges the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme Groups, representations and applications: new perspectives (supported by EPSRC grant no. EP/R014604/1), where he held a Simons Fellowship. For this research, T. Kavaskar was supported by the University Grant Commissions Start-Up Grant, Government of India grant No. F. 30-464/2019 (BSR) dated 27.03. T. Tamizh Chelvam was supported by CSIR Emeritus Scientist Scheme (No. 21 (1123)/20/EMR-II) of Council of Scientific and Industrial Research, Government of India.
PY - 2023/10/1
Y1 - 2023/10/1
N2 - The zero-divisor graph of a finite commutative ring with unity is the graph whose vertex set is the set of zero-divisors in the ring, with a and b adjacent if ab=0. We show that the class of zero-divisor graphs is universal, in the sense that every finite graph is isomorphic to an induced subgraph of a zero-divisor graph. This remains true for various restricted classes of rings, including boolean rings, products of fields, and local rings. But in more restricted classes, the zero-divisor graphs do not form a universal family. For example, the zero-divisor graph of a local ring whose maximal ideal is principal is a threshold graph; and every threshold graph is embeddable in the zero-divisor graph of such a ring. More generally, we give necessary and sufficient conditions on a non-local ring for which its zero-divisor graph to be a threshold graph. In addition, we show that there is a countable local ring whose zero-divisor graph embeds the Rado graph , and hence every finite or countable graph, as induced subgraph. Finally, we consider embeddings in related graphs such as the 2-dimensional dot product graph.
AB - The zero-divisor graph of a finite commutative ring with unity is the graph whose vertex set is the set of zero-divisors in the ring, with a and b adjacent if ab=0. We show that the class of zero-divisor graphs is universal, in the sense that every finite graph is isomorphic to an induced subgraph of a zero-divisor graph. This remains true for various restricted classes of rings, including boolean rings, products of fields, and local rings. But in more restricted classes, the zero-divisor graphs do not form a universal family. For example, the zero-divisor graph of a local ring whose maximal ideal is principal is a threshold graph; and every threshold graph is embeddable in the zero-divisor graph of such a ring. More generally, we give necessary and sufficient conditions on a non-local ring for which its zero-divisor graph to be a threshold graph. In addition, we show that there is a countable local ring whose zero-divisor graph embeds the Rado graph , and hence every finite or countable graph, as induced subgraph. Finally, we consider embeddings in related graphs such as the 2-dimensional dot product graph.
KW - Zero divisor
KW - Local ring
KW - Universal graph
KW - Rado graph
U2 - 10.1016/j.disc.2023.113580
DO - 10.1016/j.disc.2023.113580
M3 - Article
SN - 0012-365X
VL - 346
JO - Discrete Mathematics
JF - Discrete Mathematics
IS - 10
M1 - 113580
ER -