Abstract
Diagnosis and prognosis of cancer is informed by the architecture inherent in cancer patient tissue sections. This architecture is typically identified by pathologists, yet advances in computational image analysis facilitate quantitative assessment of this structure. In this article we develop a spatial point process approach in order to describe patterns in cell distribution within tissue samples taken from colorectal cancer (CRC) patients. In particular, our approach is centered on the Palm intensity function. This leads to taking an approximate-likelihood technique in fitting point processes models. We consider two Neyman-Scott point processes and a void process, fitting these point process models to the CRC patient data. We find that the parameter estimates of these models may be used to quantify the spatial arrangementof cells. Importantly, we observe characteristic differences in the spatial arrangement of cells between patients who died from CRC and those alive at follow up.
Original language | English |
---|---|
Journal | Statistics in Medicine |
Volume | Early View |
Early online date | 28 Nov 2018 |
DOIs | |
Publication status | E-pub ahead of print - 28 Nov 2018 |
Keywords
- Colorectal cancer
- Palm intensity function
- Spatial point patterns