Identifying prognostic structural features in tissue sections of colon cancer patients using point pattern analysis

Charlotte Moragh Jones-Todd, Peter Caie, Janine B. Illian, Ben C. Stevenson, Anne Savage, David J. Harrison, James L. Brown

Research output: Contribution to journalArticlepeer-review

Abstract

Diagnosis and prognosis of cancer is informed by the architecture inherent in cancer patient tissue sections. This architecture is typically identified by pathologists, yet advances in computational image analysis facilitate quantitative assessment of this structure. In this article we develop a spatial point process approach in order to describe patterns in cell distribution within tissue samples taken from colorectal cancer (CRC) patients. In particular, our approach is centered on the Palm intensity function. This leads to taking an approximate-likelihood technique in fitting point processes models. We consider two Neyman-Scott point processes and a void process, fitting these point process models to the CRC patient data. We find that the parameter estimates of these models may be used to quantify the spatial arrangementof cells. Importantly, we observe characteristic differences in the spatial arrangement of cells between patients who died from CRC and those alive at follow up.
Original languageEnglish
JournalStatistics in Medicine
VolumeEarly View
Early online date28 Nov 2018
DOIs
Publication statusE-pub ahead of print - 28 Nov 2018

Keywords

  • Colorectal cancer
  • Palm intensity function
  • Spatial point patterns

Fingerprint

Dive into the research topics of 'Identifying prognostic structural features in tissue sections of colon cancer patients using point pattern analysis'. Together they form a unique fingerprint.

Cite this