Abstract
Most biologically active oxysterols have a 3β-hydroxy-5-ene function in the ring system with an additional site of oxidation at C-7 or on the side-chain. In blood plasma oxysterols with a 7α-hydroxy group are also observed with the alternative 3-oxo-4-ene function in the ring system formed by ubiquitously expressed 3β-hydroxy-Δ 5 -C 27 -steroid oxidoreductase Δ 5 -isomerase, HSD3B7. However, oxysterols without a 7α-hydroxy group are not substrates for HSD3B7 and are not usually observed with the 3-oxo-4-ene function. Here we report the unexpected identification of oxysterols in plasma derived from umbilical cord blood and blood from pregnant women taken before delivery at 37+ weeks of gestation, of side-chain oxysterols with a 3-oxo-4-ene function but no 7α-hydroxy group. These 3-oxo-4-ene oxysterols were also identified in placenta, leading to the hypothesis that they may be formed by a previously unrecognized 3β-hydroxy-Δ 5 -C 27 -steroid oxidoreductase Δ 5 -isomerase activity of HSD3B1, an enzyme which is highly expressed in placenta. Proof-of-principle experiments confirmed that HSD3B1 has this activity. We speculate that HSD3B1 in placenta is the source of the unexpected 3-oxo-4-ene oxysterols in cord and pregnant women's plasma and may have a role in controlling the abundance of biologically active oxysterols delivered to the fetus.
Original language | English |
---|---|
Article number | 220313 |
Number of pages | 19 |
Journal | Open Biology |
Volume | 13 |
Issue number | 5 |
DOIs | |
Publication status | Published - 3 May 2023 |
Keywords
- Bile acid
- HSD3B1
- Mass spectrometry
- Oxysterol
- Placenta
- Pregnancy