High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour

Research output: Contribution to journalArticlepeer-review

Abstract

Organic light emitting diodes (OLEDs) are in widespread use in today’s mobile phones and are likely to drive the next generation of large area displays and solid-state lighting. Here we show steps towards their utility as a platform technology for biophotonics, by demonstrating devices capable of optical controlling behaviour in live animals. Using devices with pin OLED architecture, sufficient illumination intensity (0.3 mW.mm-2) to activate channelrhodopsins (ChRs) in vivo was reliably achieved at low operating voltages (5 V). In Drosophila melanogaster third instar larvae expressing ChR2(H134R) in motor neurons, we found that pulsed illumination from blue and green OLEDs triggered robust and reversible contractions in animals. This response was temporally coupled to the timing of OLED illumination. With blue OLED illumination, the initial rate and overall size of the behavioural response was strongest. Green OLEDs achieved roughly 70% of the response observed with blue OLEDs. Orange OLEDs did not produce contractions in larvae, in agreement with the spectral response of ChR2(H134R). The device configuration presented here could be modified to accommodate other small model organisms, cell cultures or tissue slices and the ability of OLEDs to provide patterned illumination and spectral tuning can broaden their utility in optogenetics experiments further.
Original languageEnglish
Article number31117
Number of pages8
JournalScientific Reports
Volume6
DOIs
Publication statusPublished - 3 Aug 2016

Fingerprint

Dive into the research topics of 'High-brightness organic light-emitting diodes for optogenetic control of Drosophila locomotor behaviour'. Together they form a unique fingerprint.

Cite this