TY - JOUR
T1 - Heat stored in the Earth system
T2 - where does the energy go?
AU - von Schuckmann, Karina
AU - Cheng, Lijing
AU - Palmer, Matthew D.
AU - Hansen, James
AU - Tassone, Caterina
AU - Aich, Valentin
AU - Adusumilli, Susheel
AU - Beltrami, Hugo
AU - Boyer, Tim
AU - Cuesta-Valero, Francisco Jose
AU - Desbruyeres, Damien
AU - Domingues, Catia
AU - Garcia-Garcia, Almudena
AU - Gentine, Pierre
AU - Gilson, John
AU - Gorfer, Maximilian
AU - Haimberger, Leopold
AU - Ishii, Masayoshi
AU - Johnson, Gregory C.
AU - Killick, Rachel
AU - King, Brian A.
AU - Kirchengast, Gottfried
AU - Kolodziejczyk, Nicolas
AU - Lyman, John
AU - Marzeion, Ben
AU - Mayer, Michael
AU - Monier, Maeva
AU - Monselesan, Didier Paolo
AU - Purkey, Sarah
AU - Roemmich, Dean
AU - Schweiger, Axel
AU - Seneviratne, Sonia
AU - Shepherd, Andrew
AU - Slater, Donald A.
AU - Steiner, Andrea K.
AU - Straneo, Fiammetta
AU - Timmermans, Mary-Louise
AU - Wijffels, Susan E.
N1 - Matthew D. Palmer and Rachel E. Killick were supported by the Met Office Hadley Centre Climate Programme funded by the BEIS and Defra. PML authors were supported by contribution number 5053. Catia M. Domingues was supported by an ARC Future Fellowship (FT130101532). Lijing Cheng is supported by the Key Deployment Project of Centre for Ocean Mega-Research of Science, CAS (COMS2019Q01). Maximilian Gorfer was supported by WEGC atmospheric remote sensing and climate system research group young scientist funds. Michael Mayer was supported by Austrian Science Fund project P33177. This work was supported by grants from the National Sciences and Engineering Research Council of Canada Discovery Grant (NSERC DG 140576948) and the Canada Research Chairs Program (CRC 230687) to Hugo Beltrami. Almudena García-García and Francisco José Cuesta-Valero are funded by Beltrami's CRC program, the School of Graduate Studies at Memorial University of Newfoundland and the Research Office at St. Francis Xavier University. Fiamma Straneo was supported by NSF OCE 1657601. Susheel Adusumilli was supported by NASA grant 80NSSC18K1424.
PY - 2020/9/7
Y1 - 2020/9/7
N2 - Human-induced atmospheric composition changes cause a radiative imbalance at the top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain of the Earth system - and particularly how much and where the heat is distributed - is fundamental to understanding how this affects warming ocean, atmosphere and land, rising surface temperature, sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory and presents an updated assessment of ocean warming estimates as well as new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2018. The study obtains a consistent long-term Earth system heat gain over the period 1971-2018, with a total heat gain of 358 +/- 37 ZJ, which is equivalent to a global heating rate of 0.47 +/- 0 .1 Wm(-2). Over the period 1971-2018 (2010-2018), the majority of heat gain is reported for the global ocean with 89% (90 %), with 52% for both periods in the upper 700m depth, 28% (30 %) for the 700-2000m depth layer and 9% (8 %) below 2000m depth. Heat gain over land amounts to 6% (5 %) over these periods, 4% (3 %) is available for the melting of grounded and floating ice, and 1% (2 %) is available for atmospheric warming. Our results also show that EEI is not only continuing, but also increasing. the EEI amounts to 0.87 +/- 0.12Wm(-2) during 2010-2018. Stabilization of climate, the goal of the universally agreed United Nations Framework Convention on Climate Change (UNFCCC) in 1992 and the Paris Agreement in 2015, requires that EEI be reduced to approximately zero to achieve Earth's system quasi-equilibrium. The amount of CO2 in the atmosphere would need to be reduced from 410 to 353 ppm to increase heat radiation to space by 0.87Wm(-2), bringing Earth back towards energy balance. This simple number, EEI, is the most fundamental metric that the scientific community and public must be aware of as the measure of how well the world is doing in the task of bringing climate change under control, and we call for an implementation of the EEI into the global stocktake based on best available science. Continued quantification and reduced uncertainties in the Earth heat inventory can be best achieved through the maintenance of the current global climate observing system, its extension into areas of gaps in the sampling, and the establishment of an international framework for concerted multidisciplinary research of the Earth heat inventory as presented in this study. This Earth heat inventory is published at the German Climate Computing Centre (DKRZ, https.//www.dkrz.de/, last access. 7 August 2020) under the DOI https.//doi.org/10.26050/WDCC/GCOS_EHI_EXP_v2 (von Schuckmann et al., 2020).
AB - Human-induced atmospheric composition changes cause a radiative imbalance at the top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain of the Earth system - and particularly how much and where the heat is distributed - is fundamental to understanding how this affects warming ocean, atmosphere and land, rising surface temperature, sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory and presents an updated assessment of ocean warming estimates as well as new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2018. The study obtains a consistent long-term Earth system heat gain over the period 1971-2018, with a total heat gain of 358 +/- 37 ZJ, which is equivalent to a global heating rate of 0.47 +/- 0 .1 Wm(-2). Over the period 1971-2018 (2010-2018), the majority of heat gain is reported for the global ocean with 89% (90 %), with 52% for both periods in the upper 700m depth, 28% (30 %) for the 700-2000m depth layer and 9% (8 %) below 2000m depth. Heat gain over land amounts to 6% (5 %) over these periods, 4% (3 %) is available for the melting of grounded and floating ice, and 1% (2 %) is available for atmospheric warming. Our results also show that EEI is not only continuing, but also increasing. the EEI amounts to 0.87 +/- 0.12Wm(-2) during 2010-2018. Stabilization of climate, the goal of the universally agreed United Nations Framework Convention on Climate Change (UNFCCC) in 1992 and the Paris Agreement in 2015, requires that EEI be reduced to approximately zero to achieve Earth's system quasi-equilibrium. The amount of CO2 in the atmosphere would need to be reduced from 410 to 353 ppm to increase heat radiation to space by 0.87Wm(-2), bringing Earth back towards energy balance. This simple number, EEI, is the most fundamental metric that the scientific community and public must be aware of as the measure of how well the world is doing in the task of bringing climate change under control, and we call for an implementation of the EEI into the global stocktake based on best available science. Continued quantification and reduced uncertainties in the Earth heat inventory can be best achieved through the maintenance of the current global climate observing system, its extension into areas of gaps in the sampling, and the establishment of an international framework for concerted multidisciplinary research of the Earth heat inventory as presented in this study. This Earth heat inventory is published at the German Climate Computing Centre (DKRZ, https.//www.dkrz.de/, last access. 7 August 2020) under the DOI https.//doi.org/10.26050/WDCC/GCOS_EHI_EXP_v2 (von Schuckmann et al., 2020).
KW - Sea-level rise
KW - Surface temperature
KW - GPS radio occultation
KW - Global ocean
KW - Climate-change
KW - Mass-balance
KW - Artic amplification
KW - Southern ocean
KW - North Atlantic
KW - Ice discharge
U2 - 10.5194/essd-12-2013-2020
DO - 10.5194/essd-12-2013-2020
M3 - Article
SN - 1866-3508
VL - 12
SP - 2013
EP - 2041
JO - Earth System Science Data
JF - Earth System Science Data
IS - 3
ER -