Gene amplification of atypical PKC-binding PARD3 in raditation-transformed neoplastic retinal pigment epithelial cell lines

H Zitzelsberger, L Hieber, H Richter, K Unger, CV Briscoe, Clare Peddie, Andrew Clive Riches

Research output: Contribution to journalArticlepeer-review

Abstract

Neoplastic transformation induced by ionizing radiation was studied using a human retinal pigment epithelial cell line immortalized by telomerase. Radiation-transformed cell clones were tumorigenic in athymic mice and were analyzed by G-banding and comparative genomic hybridization (CGH). Radiation-transformed cloned cell lines and cell lines derived from tumors produced in athymic nude mice following transplantation exhibited a recurrent karyotype:45,XX,der(10),-13. CGH showed an amplification of 10p11.2 and a deletion of the remaining 10p. Positional cloning of the amplified region by FISH analysis and subsequent sequence analysis of BAC clones showing amplified FISH signals identified the candidate gene PARD3. This gene also was found to be transcriptionally expressed at an increased level. The findings indicate that PARD3 may play an important role in radiation-induced carcinogenesis of RPE cells. This is the first evidence for PARD3 amplification in human cancer cells. (C) 2004 Wiley-Liss, Inc.

Original languageEnglish
Pages (from-to)55-59
Number of pages5
JournalGenes, Chromosomes and Cancer
Volume40
Issue number1
DOIs
Publication statusPublished - May 2004

Keywords

  • IN-VITRO
  • GAMMA-IRRADIATION
  • ALPHA-PARTICLES
  • LIFE-SPAN
  • TELOMERASE
  • EXPRESSION
  • EXPOSURE
  • POLARITY
  • COMPLEX
  • SINGLE

Fingerprint

Dive into the research topics of 'Gene amplification of atypical PKC-binding PARD3 in raditation-transformed neoplastic retinal pigment epithelial cell lines'. Together they form a unique fingerprint.

Cite this