Projects per year
Abstract
We use the Galaxy And Mass Assembly survey (GAMA) I data set combined with GALEX, Sloan Digital Sky Survey (SDSS) and UKIRT Infrared Deep Sky Survey (UKIDSS) imaging to construct the low-redshift (z <0.1) galaxy luminosity functions in FUV, NUV, ugriz and YJHK bands from within a single well-constrained volume of 3.4 × 10 (Mpc h). The derived luminosity distributions are normalized to the SDSS data release 7 (DR7) main survey to reduce the estimated cosmic variance to the 5 per cent level. The data are used to construct the cosmic spectral energy distribution (CSED) from 0.1 to 2.1 μm free from any wavelength-dependent cosmic variance for both the elliptical and non-elliptical populations. The two populations exhibit dramatically different CSEDs as expected for a predominantly old and young population, respectively. Using the Driver et al. prescription for the azimuthally averaged photon escape fraction, the non-ellipticals are corrected for the impact of dust attenuation and the combined CSED constructed. The final results show that the Universe is currently generating (1.8 ± 0.3) × 10h W Mpc of which (1.2 ± 0.1) × 10h W Mpc is directly released into the inter-galactic medium and (0.6 ± 0.1) × 10h W Mpc is reprocessed and reradiated by dust in the far-IR. Using the GAMA data and our dust model we predict the mid- and far-IR emission which agrees remarkably well with available data. We therefore provide a robust description of the pre- and post-dust attenuated energy output of the nearby Universe from 0.1μm to 0.6 mm. The largest uncertainty in this measurement lies in the mid- and far-IR bands stemming from the dust attenuation correction and its currently poorly constrained dependence on environment, stellar mass and morphology.
Original language | English |
---|---|
Pages (from-to) | 3244-3264 |
Number of pages | 21 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 427 |
Issue number | 4 |
Early online date | 20 Dec 2012 |
DOIs | |
Publication status | Published - 21 Dec 2012 |
Fingerprint
Dive into the research topics of 'Galaxy And Mass Assembly (GAMA): the 0.013 < z < 0.1 cosmic spectral energy distribution from 0.1 μm to 1 mm'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Galaxy and matter assembly STFC: Galaxy And Matter Assembly
Driver, S. P. (PI)
Science & Technology Facilities Council
1/04/08 → 31/03/11
Project: Standard