TY - JOUR
T1 - From a discrete model of chemotaxis with volume-filling to a generalized Patlak–Keller–Segel model
AU - Bubba, Federica
AU - Lorenzi, Tommaso
AU - Macfarlane, Fiona R.
N1 - Funding: The authors gratefully acknowledge support of the project PICS-CNRS no. 07688. F.B. acknowledges funding from the European Research Council (ERC, grant agreement No. 740623) and the Université Franco-Italienne.
PY - 2020/5/27
Y1 - 2020/5/27
N2 - We present a discrete model of chemotaxis whereby cells responding to a chemoattractant are seen as individual agents whose movement is described through a set of rules that result in a biased random walk. In order to take into account possible alterations in cellular motility observed at high cell densities (i.e. volume-filling), we let the probabilities of cell movement be modulated by a decaying function of the cell density. We formally show that a general form of the celebrated Patlak–Keller–Segel (PKS) model of chemotaxis can be formally derived as the appropriate continuum limit of this discrete model. The family of steady-state solutions of such a generalized PKS model are characterized and the conditions for the emergence of spatial patterns are studied via linear stability analysis. Moreover, we carry out a systematic quantitative comparison between numerical simulations of the discrete model and numerical solutions of the corresponding PKS model, both in one and in two spatial dimensions. The results obtained indicate that there is excellent quantitative agreement between the spatial patterns produced by the two models. Finally, we numerically show that the outcomes of the two models faithfully replicate those of the classical PKS model in a suitable asymptotic regime.
AB - We present a discrete model of chemotaxis whereby cells responding to a chemoattractant are seen as individual agents whose movement is described through a set of rules that result in a biased random walk. In order to take into account possible alterations in cellular motility observed at high cell densities (i.e. volume-filling), we let the probabilities of cell movement be modulated by a decaying function of the cell density. We formally show that a general form of the celebrated Patlak–Keller–Segel (PKS) model of chemotaxis can be formally derived as the appropriate continuum limit of this discrete model. The family of steady-state solutions of such a generalized PKS model are characterized and the conditions for the emergence of spatial patterns are studied via linear stability analysis. Moreover, we carry out a systematic quantitative comparison between numerical simulations of the discrete model and numerical solutions of the corresponding PKS model, both in one and in two spatial dimensions. The results obtained indicate that there is excellent quantitative agreement between the spatial patterns produced by the two models. Finally, we numerically show that the outcomes of the two models faithfully replicate those of the classical PKS model in a suitable asymptotic regime.
KW - Chemotaxis
KW - Discrete models
KW - Generalized Patlak–Keller–Segel model
KW - Volume-filling
U2 - 10.1098/rspa.2019.0871
DO - 10.1098/rspa.2019.0871
M3 - Article
AN - SCOPUS:85086074824
SN - 1364-5021
VL - 476
JO - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
JF - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
IS - 2237
M1 - 20190871
ER -