Projects per year
Abstract
Kagome materials have emerged as a setting for emergent electronic phenomena that encompass different aspects of symmetry and topology. It is debated whether the XV6Sn6 kagome family (where X is a rare-earth element), a recently discovered family of bilayer kagome metals, hosts a topologically non-trivial ground state resulting from the opening of spin–orbit coupling gaps. These states would carry a finite spin Berry curvature, and topological surface states. Here we investigate the spin and electronic structure of the XV6Sn6 kagome family. We obtain evidence for a finite spin Berry curvature contribution at the centre of the Brillouin zone, where the nearly flat band detaches from the dispersing Dirac band because of spin–orbit coupling. In addition, the spin Berry curvature is further investigated in the charge density wave regime of ScV6Sn6 and it is found to be robust against the onset of the temperature-driven ordered phase. Utilizing the sensitivity of angle-resolved photoemission spectroscopy to the spin and orbital angular momentum, our work unveils the spin Berry curvature of topological kagome metals and helps to define its spectroscopic fingerprint.
Original language | English |
---|---|
Number of pages | 9 |
Journal | Nature Physics |
DOIs | |
Publication status | Published - 18 May 2023 |
Fingerprint
Dive into the research topics of 'Flat band separation and robust spin Berry curvature in bilayer kagome metals'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Engineered Quantum States: Engineered quantum states via atmoic-scale assembly of artificial 2D heterostructures
King, P. (PI)
1/08/17 → 31/07/22
Project: Standard