Abstract
The delafossite series of layered oxides includes some of the highest conductivity metals ever discovered. Of these, PtCoO2, with a room-temperature resistivity of 1.8 μΩcm for in-plane transport, is the most conducting of all. The high conduction takes place in triangular lattice Pt layers, separated by layers of Co-O octahedra, and the electronic structure is determined by the interplay of the two types of layers. We present a detailed study of quantum oscillations in PtCoO2, at temperatures down to 35 mK and magnetic fields up to 30 T. As for PdCoO2 and PdRhO2, the Fermi surface consists of a single cylinder with mainly Pt character and an effective mass close to the free-electron value. Due to Fermi-surface warping, two close-lying high frequencies are observed. Additionally, a pronounced difference frequency appears. By analyzing the detailed angular dependence of the quantum-oscillation frequencies, we establish the warping parameters of the Fermi surface. We compare these results to the predictions of first-principles electronic-structure calculations including spin-orbit coupling on Pt and Co and on-site correlation U on Co, and hence demonstrate that electronic correlations in the Co-O layers play an important role in determining characteristic features of the electronic structure of PtCoO2.
Original language | English |
---|---|
Article number | 195101 |
Number of pages | 9 |
Journal | Physical Review B |
Volume | 101 |
Issue number | 19 |
DOIs | |
Publication status | Published - 1 May 2020 |