TY - JOUR
T1 - Factors influencing bacterial microbiome composition in a wild non-human primate community in TaÏ National Park, Côte d’Ivoire
AU - Gogarten, Jan F.
AU - Davies, T. Jonathan
AU - Benjamino, Jacquelynn
AU - Gogarten, J. Peter
AU - Graf, Joerg
AU - Mielke, Alexander
AU - Mundry, Roger
AU - Nelson, Michael C.
AU - Wittig, Roman M.
AU - Leendertz, Fabian H.
AU - Calvignac-Spencer, Sébastien
N1 - F.G. was supported by an NSF Graduate Research Fellowship (DGE-1142336), the Canadian Institutes of Health Research’s Strategic Training Initiative in Health Research’s Systems Biology Training Program, an NSERC Vanier Canada Graduate Scholarship (CGS), and a long-term Research Grant from the German Academic Exchange Service (DAAD-91525837-57048249). Core-funding for the Taï Chimpanzee Project is provided by the Max Planck Society.
PY - 2018/10
Y1 - 2018/10
N2 - Microbiomes impact a variety of processes including a host’s ability to access nutrients and maintain health. While host species differences in microbiomes have been described across ecosystems, little is known about how microbiomes assemble, particularly in the ecological and social contexts in which they evolved. We examined gut microbiome composition in nine sympatric wild non-human primate (NHP) species. Despite sharing an environment and interspecific interactions, individuals harbored unique and persistent microbiomes influenced by host species, social group, and parentage, but surprisingly not by social relationships among members of a social group. We found a branching order of host-species networks constructed using the composition of their microbiomes as characters, which was incongruent with known NHP phylogenetic relationships, with chimpanzees (Pan troglodytes verus) sister to colobines, upon which they regularly prey. In contrast to phylogenetic clustering found in all monkey microbiomes, chimpanzee microbiomes were unique in that they exhibited patterns of phylogenetic overdispersion. This reflects unique ecological processes impacting microbiome composition in chimpanzees and future studies will elucidate the aspects of chimpanzee ecology, life history, and physiology that explain their unique microbiome community structure. Our study of contemporaneous microbiomes of all sympatric diurnal NHP in an ecosystem highlights the diverse dispersal routes shaping these complex communities.
AB - Microbiomes impact a variety of processes including a host’s ability to access nutrients and maintain health. While host species differences in microbiomes have been described across ecosystems, little is known about how microbiomes assemble, particularly in the ecological and social contexts in which they evolved. We examined gut microbiome composition in nine sympatric wild non-human primate (NHP) species. Despite sharing an environment and interspecific interactions, individuals harbored unique and persistent microbiomes influenced by host species, social group, and parentage, but surprisingly not by social relationships among members of a social group. We found a branching order of host-species networks constructed using the composition of their microbiomes as characters, which was incongruent with known NHP phylogenetic relationships, with chimpanzees (Pan troglodytes verus) sister to colobines, upon which they regularly prey. In contrast to phylogenetic clustering found in all monkey microbiomes, chimpanzee microbiomes were unique in that they exhibited patterns of phylogenetic overdispersion. This reflects unique ecological processes impacting microbiome composition in chimpanzees and future studies will elucidate the aspects of chimpanzee ecology, life history, and physiology that explain their unique microbiome community structure. Our study of contemporaneous microbiomes of all sympatric diurnal NHP in an ecosystem highlights the diverse dispersal routes shaping these complex communities.
U2 - 10.1038/s41396-018-0166-1
DO - 10.1038/s41396-018-0166-1
M3 - Article
C2 - 29955140
SN - 1751-7362
VL - 12
SP - 2559
EP - 2574
JO - ISME Journal
JF - ISME Journal
IS - 10
ER -