Exploring the effects of residence time on the utility of stable isotopes and S/C ratios as proxies for ocean connectivity

Eva Elisabeth Stueeken*, Sebastian Viehmann, Simon Hohl

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Downloads (Pure)


Various geochemical proxies have been developed to determine if ancient sedimentary strata were deposited in marine or nonmarine environments. A critical parameter for proxy reliability is the residence time of aqueous species in seawater, which is rarely considered for proxies relying on stable isotopes and elemental abundance ratios. Differences in residence time may affect our ability to track geologically short-lived alternations between marine and nonmarine conditions. To test this effect for sulfur and nitrogen isotopes and sulfur/carbon ratios, we investigated a stratigraphic section in the Miocene Oberpullendorf Basin in Austria. Here, previous work revealed typical seawater-like rare earth element and yttrium (REY) systematics transitioning to nonmarine-like systematics. This shift was interpreted as a brief transition from an open marine depositional setting to a restricted embayment with a reduced level of exchange with the open ocean and possibly freshwater influence. Our isotopic results show no discernible response in carbonate-associated sulfate sulfur isotopes and carbon/sulfur abundance ratios during the interval of marine restriction inferred from the REY data, but nitrogen isotopes show a decrease by several permil. This observation is consistent with the much longer residence time of sulfate in seawater compared with REY and nitrate. Hence, this case study illustrates that the residence time is a key factor for the utility of seawater proxies. In some cases, it may make geochemical parameters more sensitive to marine water influx than paleontological observations, as in the Oberpullendorf Basin. Particular care is warranted in deep time, when marine residence times likely differ markedly from the modern.
Original languageEnglish
Pages (from-to)1337–1349
Number of pages13
JournalACS Earth and Space Chemistry
Issue number7
Early online date8 Jul 2023
Publication statusPublished - 20 Jul 2023


  • Nitrogen isotopes
  • Sulfur isotopes
  • Nonmarine environments
  • Residence time
  • Miocene
  • Stromatolites
  • Paratethys


Dive into the research topics of 'Exploring the effects of residence time on the utility of stable isotopes and S/C ratios as proxies for ocean connectivity'. Together they form a unique fingerprint.

Cite this