TY - JOUR
T1 - Experimental and DFT studies explain solvent control of c-h activation and product selectivity in the Rh(III)-catalyzed formation of neutral and cationic heterocycles
AU - Davies, David L.
AU - Ellul, Charles E.
AU - MacGregor, Stuart A.
AU - McMullin, Claire L.
AU - Singh, Kuldip
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/8/5
Y1 - 2015/8/5
N2 - A range of novel heterocyclic cations have been synthesized by the Rh(III)-catalyzed oxidative C-N and C-C coupling of 1-phenylpyrazole, 2-phenylpyridine, and 2-vinylpyridine with alkynes (4-octyne and diphenylacetylene). The reactions proceed via initial C-H activation, alkyne insertion, and reductive coupling, and all three of these steps are sensitive to the substrates involved and the reaction conditions. Density functional theory (DFT) calculations show that C-H activation can proceed via a heteroatom-directed process that involves displacement of acetate by the neutral substrate to form charged intermediates. This step (which leads to cationic C-N coupled products) is therefore favored by more polar solvents. An alternative non-directed C-H activation is also possible that does not involve acetate displacement and so becomes favored in low polarity solvents, leading to C-C coupled products. Alkyne insertion is generally more favorable for diphenylacetylene over 4-octyne, but the reverse is true of the reductive coupling step. The diphenylacetylene moiety can also stabilize unsaturated seven-membered rhodacycle intermediates through extra interaction with one of the Ph substituents. With 1-phenylpyrazole this effect is sufficient to suppress the final C-N reductive coupling. A comparison of a series of seven-membered rhodacycles indicates the barrier to coupling is highly sensitive to the two groups involved and follows the trend C-N+ > C-N > C-C (i.e., involving the formation of cationic C-N, neutral C-N, and neutral C-C coupled products, respectively).
AB - A range of novel heterocyclic cations have been synthesized by the Rh(III)-catalyzed oxidative C-N and C-C coupling of 1-phenylpyrazole, 2-phenylpyridine, and 2-vinylpyridine with alkynes (4-octyne and diphenylacetylene). The reactions proceed via initial C-H activation, alkyne insertion, and reductive coupling, and all three of these steps are sensitive to the substrates involved and the reaction conditions. Density functional theory (DFT) calculations show that C-H activation can proceed via a heteroatom-directed process that involves displacement of acetate by the neutral substrate to form charged intermediates. This step (which leads to cationic C-N coupled products) is therefore favored by more polar solvents. An alternative non-directed C-H activation is also possible that does not involve acetate displacement and so becomes favored in low polarity solvents, leading to C-C coupled products. Alkyne insertion is generally more favorable for diphenylacetylene over 4-octyne, but the reverse is true of the reductive coupling step. The diphenylacetylene moiety can also stabilize unsaturated seven-membered rhodacycle intermediates through extra interaction with one of the Ph substituents. With 1-phenylpyrazole this effect is sufficient to suppress the final C-N reductive coupling. A comparison of a series of seven-membered rhodacycles indicates the barrier to coupling is highly sensitive to the two groups involved and follows the trend C-N+ > C-N > C-C (i.e., involving the formation of cationic C-N, neutral C-N, and neutral C-C coupled products, respectively).
UR - http://www.scopus.com/inward/record.url?scp=84938841882&partnerID=8YFLogxK
U2 - 10.1021/jacs.5b04858
DO - 10.1021/jacs.5b04858
M3 - Article
C2 - 26115418
AN - SCOPUS:84938841882
SN - 0002-7863
VL - 137
SP - 9659
EP - 9669
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 30
ER -