TY - JOUR
T1 - Experimental and computational investigation of C-N bond activation in ruthenium N-heterocyclic carbene complexes
AU - Häller, L. Jonas L.
AU - Page, Michael J.
AU - Erhardt, Stefan
AU - MacGregor, Stuart A.
AU - Mahon, Mary F.
AU - Naser, M. Abu
AU - Vélez, Andrea
AU - Whittlesey, Michael K.
PY - 2010/12/29
Y1 - 2010/12/29
N2 - A combination of experimental studies and density functional theory calculations is used to study C-N bond activation in a series of ruthenium N-alkyl-substituted heterocyclic carbene (NHC) complexes. These show that prior C-H activation of the NHC ligand renders the system susceptible to irreversible C-N activation. In the presence of a source of HCl, C-H activated Ru(I iPr2Me2)′(PPh3) 2(CO)H (1, IiPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) reacts to give Ru(I iPrHMe2)(PPh3)2(CO)HCl (2, I iPrHMe2 = 1-isopropyl-4,5-dimethylimidazol-2-ylidene) and propene. The mechanism involves (i) isomerization to a trans-phosphine isomer, 1c, in which hydride is trans to the metalated alkyl arm, (ii) C-N cleavage to give an intermediate propene complex with a C2-metalated imidazole ligand, and (iii) N-protonation and propene/Cl- substitution to give 2. The overall computed activation barrier (ΔEcalcd) corresponds to the isomerization/C-N cleavage process and has a value of +24.4 kcal/mol. C-N activation in 1c is promoted by the relief of electronic strain arising from the trans disposition of the high-trans-influence hydride and alkyl ligands. Experimental studies on analogues of 1 with different C4/C5 carbene backbone substituents (Ru(IiPr2Ph2)′(PPh 3)2(CO)H, Ru(IiPr2)′(PPh 3)2(CO)H) or different N-substituents (Ru(IEt 2Me2)′(PPh3)2(CO)H) reveal that Ph substituents promote C-N activation. Calculations confirm that Ru(I iPr2Ph2)′(PPh3) 2(CO)H undergoes isomerization/C-N bond cleavage with a low barrier of only +21.4 kcal/mol. Larger N-alkyl groups also facilitate C-N bond activation (Ru(ItBu2Me2)′(PPh 3)2(CO)H, ΔEcalcd = +21.3 kcal/mol), and in this case the reaction is promoted by the formation of the more highly substituted 2-methylpropene.
AB - A combination of experimental studies and density functional theory calculations is used to study C-N bond activation in a series of ruthenium N-alkyl-substituted heterocyclic carbene (NHC) complexes. These show that prior C-H activation of the NHC ligand renders the system susceptible to irreversible C-N activation. In the presence of a source of HCl, C-H activated Ru(I iPr2Me2)′(PPh3) 2(CO)H (1, IiPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) reacts to give Ru(I iPrHMe2)(PPh3)2(CO)HCl (2, I iPrHMe2 = 1-isopropyl-4,5-dimethylimidazol-2-ylidene) and propene. The mechanism involves (i) isomerization to a trans-phosphine isomer, 1c, in which hydride is trans to the metalated alkyl arm, (ii) C-N cleavage to give an intermediate propene complex with a C2-metalated imidazole ligand, and (iii) N-protonation and propene/Cl- substitution to give 2. The overall computed activation barrier (ΔEcalcd) corresponds to the isomerization/C-N cleavage process and has a value of +24.4 kcal/mol. C-N activation in 1c is promoted by the relief of electronic strain arising from the trans disposition of the high-trans-influence hydride and alkyl ligands. Experimental studies on analogues of 1 with different C4/C5 carbene backbone substituents (Ru(IiPr2Ph2)′(PPh 3)2(CO)H, Ru(IiPr2)′(PPh 3)2(CO)H) or different N-substituents (Ru(IEt 2Me2)′(PPh3)2(CO)H) reveal that Ph substituents promote C-N activation. Calculations confirm that Ru(I iPr2Ph2)′(PPh3) 2(CO)H undergoes isomerization/C-N bond cleavage with a low barrier of only +21.4 kcal/mol. Larger N-alkyl groups also facilitate C-N bond activation (Ru(ItBu2Me2)′(PPh 3)2(CO)H, ΔEcalcd = +21.3 kcal/mol), and in this case the reaction is promoted by the formation of the more highly substituted 2-methylpropene.
UR - http://www.scopus.com/inward/record.url?scp=78650674750&partnerID=8YFLogxK
U2 - 10.1021/ja109702h
DO - 10.1021/ja109702h
M3 - Article
AN - SCOPUS:78650674750
SN - 0002-7863
VL - 132
SP - 18408
EP - 18416
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 51
ER -