Projects per year
Abstract
Two fundamental problems for extraterrestrial intelligences (ETIs) attempting to establish interstellar communication are timing and energy consumption. Humanity's study of exoplanets via their transit across the host star highlights a means of solving both problems. An ETI ‘A’ can communicate with ETI ‘B’ if B is observing transiting planets in A's star system, either by building structures to produce artificial transits observable by B, or by emitting signals at B during transit, at significantly lower energy consumption than typical electromagnetic transmission schemes. This can produce a network of interconnected civilizations, establishing contact via observing each other's transits. Assuming that civilizations reside in a Galactic Habitable Zone (GHZ), I conduct Monte Carlo Realization simulations of the establishment and growth of this network, and analyse its properties in the context of graph theory. I find that at any instant, only a few civilizations are correctly aligned to communicate via transits. However, we should expect the true network to be cumulative, where a ‘handshake’ connection at any time guarantees connection in the future via e.g. electromagnetic signals. In all our simulations, the cumulative network connects all civilizations together in a complete network. If civilizations share knowledge of their network connections, the network can be fully complete on timescales of order a hundred thousand years. Once established, this network can connect any two civilizations either directly, or via intermediate civilizations, with a path much less than the dimensions of the GHZ.
Original language | English |
---|---|
Number of pages | 10 |
Journal | International Journal of Astrobiology |
Volume | First View |
Early online date | 12 Mar 2018 |
DOIs | |
Publication status | E-pub ahead of print - 12 Mar 2018 |
Keywords
- Exoplanet transit
- METI
- SETI
- Simulation
Fingerprint
Dive into the research topics of 'Exoplanet transits as the foundation of an interstellar communications network'. Together they form a unique fingerprint.Projects
- 1 Finished
-
ERC ECOGAL: Star Formation and the Galax: ECOGAL
Bonnell, I. A. (PI)
1/05/12 → 30/04/17
Project: Standard