Projects per year
Abstract
We consider strong external difference families (SEDFs); these are external difference families satisfying additional conditions on the patterns of external differences that occur, and were first defined in the context of classifying optimal strong algebraic manipulation detection codes. We establish new necessary conditions for the existence of (n , m , k , λ) -SEDFs; in particular giving a near-complete treatment of the λ = 2 case. For the case m = 2 , we obtain a structural characterization for partition type SEDFs (of maximum possible k and λ), showing that these correspond to Paley partial difference sets. We also prove a version of our main result for generalized SEDFs, establishing non-trivial necessary conditions for their existence.
Original language | English |
---|---|
Pages (from-to) | 87-95 |
Journal | Discrete Mathematics |
Volume | 341 |
Issue number | 1 |
Early online date | 19 Sept 2017 |
DOIs | |
Publication status | Published - Jan 2018 |
Keywords
- Strong external difference family
- AMD code
Fingerprint
Dive into the research topics of 'Existence and non-existence results for strong external difference families'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Difference families in coding and crypto: Difference families in coding and cryptography
Huczynska, S. (PI)
21/03/17 → 20/03/18
Project: Standard