TY - JOUR
T1 - Exact likelihoods for N-mixture models with time-to-detection data
AU - Haines, Linda M.
AU - Altwegg, Res
AU - Borchers, D. L.
N1 - Linda Haines and Res Altwegg thank the University of Cape Town and the National Research Foundation (NRF) of South Africa for financial support.
PY - 2023/12/11
Y1 - 2023/12/11
N2 - This paper is concerned with the formulation of (Formula presented.) N-mixture models for estimating the abundance and probability of detection of a species from binary response, count and time-to-detection data. A modelling framework, which encompasses time-to-first-detection within the context of detection/non-detection and time-to-each-detection and time-to-first-detection within the context of count data, is introduced. Two observation processes which depend on whether or not double counting is assumed to occur are also considered. The main focus of the paper is on the derivation of explicit forms for the likelihoods associated with each of the proposed models. Closed-form expressions for the likelihoods associated with time-to-detection data are new and are developed from the theory of order statistics. A key finding of the study is that, based on the assumption of no double counting, the likelihoods associated with times-to-detection together with count data are the product of the likelihood for the counts alone and a term which depends on the detection probability parameter. This result demonstrates that, in this case, recording times-to-detection could well improve precision in estimation over recording counts alone. In contrast, for the double counting protocol with exponential arrival times, no information was found to be gained by recording times-to-detection in addition to the count data. An R package and an accompanying vignette are also introduced in order to complement the algebraic results and to demonstrate the use of the models in practice.
AB - This paper is concerned with the formulation of (Formula presented.) N-mixture models for estimating the abundance and probability of detection of a species from binary response, count and time-to-detection data. A modelling framework, which encompasses time-to-first-detection within the context of detection/non-detection and time-to-each-detection and time-to-first-detection within the context of count data, is introduced. Two observation processes which depend on whether or not double counting is assumed to occur are also considered. The main focus of the paper is on the derivation of explicit forms for the likelihoods associated with each of the proposed models. Closed-form expressions for the likelihoods associated with time-to-detection data are new and are developed from the theory of order statistics. A key finding of the study is that, based on the assumption of no double counting, the likelihoods associated with times-to-detection together with count data are the product of the likelihood for the counts alone and a term which depends on the detection probability parameter. This result demonstrates that, in this case, recording times-to-detection could well improve precision in estimation over recording counts alone. In contrast, for the double counting protocol with exponential arrival times, no information was found to be gained by recording times-to-detection in addition to the count data. An R package and an accompanying vignette are also introduced in order to complement the algebraic results and to demonstrate the use of the models in practice.
KW - Binary responses
KW - Binomial distribution
KW - Counts
KW - Detection/non-detection
KW - Exponential distribution
KW - Homogeneous Poisson process
U2 - 10.48550/arXiv.2309.14777
DO - 10.48550/arXiv.2309.14777
M3 - Article
AN - SCOPUS:85179350544
SN - 1369-1473
VL - 65
SP - 327
EP - 343
JO - Australian and New Zealand Journal of Statistics
JF - Australian and New Zealand Journal of Statistics
IS - 4
ER -