Projects per year
Abstract
We study the geometric properties of random multiplicative cascade measures defined on self-similar sets. We show that such measures and their projections and sections are almost surely exact dimensional, generalizing a result of Feng and Hu's for self-similar measures. This, together with a compact group extension argument, enables us to generalize Hochman and Shmerkin's theorems on projections of deterministic self-similar measures to these random measures without requiring any separation conditions on the underlying sets. We give applications to self-similar sets and fractal percolation, including new results on projections, C1-images and distance sets.
Original language | English |
---|---|
Pages (from-to) | 388-412 |
Number of pages | 25 |
Journal | Journal of the London Mathematical Society |
Volume | 90 |
Issue number | 2 |
Early online date | 14 Jul 2014 |
DOIs | |
Publication status | Published - Oct 2014 |
Fingerprint
Dive into the research topics of 'Exact dimensionality and projections of random self-similar measures and sets'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Newton International Fellowship 2010: Newton International Fellowship 2010
Falconer, K. J. (PI)
1/01/11 → 31/12/12
Project: Fellowship