TY - JOUR

T1 - Exact dimensionality and projection properties of Gaussian multiplicative chaos measures

AU - Falconer, Kenneth

AU - Jin, Xiong

N1 - Paper originally entitled 'Hölder continuity of the Liouville Quantum Gravity measure'

PY - 2019/8/15

Y1 - 2019/8/15

N2 - Given a measure ν on a regular planar domain D, the Gaussian multiplicative chaos measure of ν studied in this paper is the random measure ^ν^ obtained as the limit of the exponential of the γ-parameter circle averages of the Gaussian free field on D weighted by ν. We investigate the dimensional and geometric properties of these random measures. We first show that if ν is a finite Borel measure on D with exact dimension α>0, then the associated GMC measure ^ν^ is nondegenerate and is almost surely exact dimensional with dimension α-γ2/2, provided γ2/2<α. We then show that if νt is a Hölder-continuously parameterized family of measures, then the total mass of ^νt^ varies Hölder-continuously with t, provided that γ is sufficiently small. As an application we show that if γ<0.28, then, almost surely, the orthogonal projections of the γ-Liouville quantum gravity measure ^ν^ on a rotund convex domain D in all directions are simultaneously absolutely continuous with respect to Lebesgue measure with Hölder continuous densities. Furthermore, ^ν^ has positive Fourier dimension almost surely.

AB - Given a measure ν on a regular planar domain D, the Gaussian multiplicative chaos measure of ν studied in this paper is the random measure ^ν^ obtained as the limit of the exponential of the γ-parameter circle averages of the Gaussian free field on D weighted by ν. We investigate the dimensional and geometric properties of these random measures. We first show that if ν is a finite Borel measure on D with exact dimension α>0, then the associated GMC measure ^ν^ is nondegenerate and is almost surely exact dimensional with dimension α-γ2/2, provided γ2/2<α. We then show that if νt is a Hölder-continuously parameterized family of measures, then the total mass of ^νt^ varies Hölder-continuously with t, provided that γ is sufficiently small. As an application we show that if γ<0.28, then, almost surely, the orthogonal projections of the γ-Liouville quantum gravity measure ^ν^ on a rotund convex domain D in all directions are simultaneously absolutely continuous with respect to Lebesgue measure with Hölder continuous densities. Furthermore, ^ν^ has positive Fourier dimension almost surely.

UR - https://www.ams.org/journals/tran/0000-000-00/S0002-9947-2019-07776-0/

U2 - 10.1090/tran/7776

DO - 10.1090/tran/7776

M3 - Article

SN - 0002-9947

VL - 372

SP - 2921

EP - 2957

JO - Transactions of the American Mathematical Society

JF - Transactions of the American Mathematical Society

IS - 4

ER -