Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics

Samuel P. Kounaves*, Brandi L. Carrier, Glen D. O'Neil, Shannon T. Stroble, Mark W. Claire

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The results from the Viking mission in the mid 1970s provided evidence that the martian surface contained oxidants responsible for destroying organic compounds. In 2008 the Phoenix Wet Chemistry Lab (WCL) found perchlorate (ClO4-) in three soil samples at concentrations from 0.5 to 0.7 wt%. The detection of chloromethane (CH3Cl) and dichloromethane (CH2Cl(2)) by the Viking pyrolysis gas chromatograph-mass spectrometer (GC-MS) may have been a result of ClO4- at that site oxidizing either terrestrial organic contaminates or, if present, indigenous organics. Recently, the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) Curiosity directly measured the presence of CH3Cl, CH2Cl2 and, along with measurements of HCl and oxygen, indirectly indicate the presence of ClO-. However, except for Phoenix, no other direct measurement of the ClO4- anion in martian soil or rock has been made. We report here ion chromatographic (IC) and isotopic analyses of a unique sawdust portion of the martian meteorite EETA79001 that show the presence by mass of 0.6 +/- 0.1 ppm CIOT,, 1.4 +/- 0.1 ppm C10,-, and 16 +/- 0.2 ppm NO; at a quantity and location within the meteorite that is difficult to reconcile with terrestrial contamination. The sawdust sample consists of basaltic material with a minor salt-rich inclusion in a mass ratio of -300:1, thus the salts may be 300 times more concentrated within the inclusion than the whole sample. The molar ratios of NO : ClO4-; and Cl- : C10,-, are very different for EETA79001 at -40:1 and 15:1, respectively, than the Antarctic soils and ice near where the meteorite was recovered at -10,000:1 and 5000:1, respectively. In addition, the isotope ratios for EETA79001 with delta N-15 = -10.48 +/- 0.32 parts per thousand and 8180 = +51.61 +/- 0.74%. are significantly different from that of the nearby Miller Range blue ice with delta N-15 = +102.80 +/- 0.14 parts per thousand and delta O-18 = +43.11 +/- 0.64%, This difference is notable, because if the meteorite had been contaminated with nitrate from the blue ice, the delta N-15 values should be the same. More importantly, the delta N-15 is similar to the uncontaminated Tissint Mars meteorite with 815N = -4.5%, These findings suggest a martian origin of the ClO4-, ClO3- and NO; in EETA79001, and in conjunction with previous discoveries, support the hypothesis that they are present and ubiquitous on Mars. The presence of ClO3- in EETA79001 suggests the accompanying presence of other highly oxidizing oxychlorines such as ClO- or ClO-, produced both by UV oxidation of o- and y- and X-ray radiolysis of C10:4. Since such intermediary species may contribute to oxidization of organic compounds, only highly refractory and/or well-protected organics are likely to survive. The global presence of ClO4-, ClO3-, and NO;, has broad implications for the planet-wide water cycle, formation of brines, human habitability, organics, and life. (C) 2013 Elsevier Inc. All rights reserved.

Original languageEnglish
Pages (from-to)206-213
Number of pages8
JournalIcarus
Volume229
DOIs
Publication statusPublished - Feb 2014

Keywords

  • Mars
  • Astrobiology
  • Mars, surface
  • Meteorites
  • Regoliths
  • SNC METEORITES
  • AMINO-ACIDS
  • ISOTOPIC COMPOSITION
  • OZONE OXIDATION
  • SOIL
  • ORIGIN
  • CHLORINE
  • SURFACE
  • DECOMPOSITION
  • SHERGOTTITE

Fingerprint

Dive into the research topics of 'Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics'. Together they form a unique fingerprint.

Cite this