Abstract
Radical H atom abstraction from a set of N-heterocyclic carbene (NHC) complexes of alkenylboranes bearing two tert-butyl ester substituents was studied by EPR spectroscopy. The initial boraallyl radical intermediates rapidly ring closed onto the O atoms of their distal ester groups in 5-endo mode to yield 1,2-oxaborole radicals. Unexpectedly, two structural varieties of these radicals were identified from their EPR spectra. These proved to be two stable rotamers, in which the carbonyl group of the tert-butyl ester was oriented toward and away from the NHC ring. These rotamers were akin to the s-trans and s-cis rotamers of α,β-unsaturated carbonyl compounds. Their stability was attributed to the quasi-allylic interaction of their unpaired electrons with the carbonyl units of their adjacent ester groups. EPR spectroscopic evidence for two rotamers of the analogous methyl ester containing NHC-oxaborole radicals was also obtained. An improved synthetic procedure for preparing rare NHC-boralactones was developed involving treatment of the alkenyl NHC-boranes with AIBN and tert-dodecanethiol.
Original language | English |
---|---|
Pages (from-to) | 2102-2111 |
Number of pages | 10 |
Journal | The Journal of Organic Chemistry |
Volume | 84 |
Issue number | 4 |
Early online date | 21 Jan 2019 |
DOIs | |
Publication status | Published - 15 Feb 2019 |