Enzymatic transhalogenation of dendritic RGD peptide constructs with the fluorinase

Stephen Thompson, Ian Fleming, David O'Hagan

Research output: Contribution to journalArticlepeer-review

Abstract

The substrate scope of fluorinase enzyme mediated transhalogenation reactions is extended. Substrate tolerance allows a peptide cargo to be tethered to a 5'-chloro-5'-deoxynucleoside substrate for transhalogenation by the enzyme to a 5'-fluoro-5'-deoxynucleoside. The reaction is successfully extended from that previously reported for a monomeric cyclic peptide (cRGD) to cargoes of dendritic scaffolds carrying two and four cyclic peptide motifs. The RGD peptide sequence is known to bind upregulated αVβ3 integrin motifs on the surface of cancer cells and it is demonstrated that the fluorinated products have a higher affinity to αVβ3 integrin than their monomeric counterparts. Extending the strategy to radiolabelling of the peptide cargoes by tagging the peptides with [18F]fluoride was only moderately successful due to the poor water solubility of these higher order peptide scaffolds although the strategy holds promise for peptide constructs with improved solubility.
Original languageEnglish
Pages (from-to)3120-3129
JournalOrganic & Biomolecular Chemistry
Volume14
Issue number11
Early online date15 Feb 2016
DOIs
Publication statusPublished - 21 Mar 2016

Keywords

  • Fluorinase enzyme
  • Fluorination
  • cRGD dendrimers
  • αVβ3 integrins
  • [18F]fluoride

Fingerprint

Dive into the research topics of 'Enzymatic transhalogenation of dendritic RGD peptide constructs with the fluorinase'. Together they form a unique fingerprint.

Cite this