Emerging biomedical applications of organic light-emitting diodes

Caroline Murawski, Malte Christian Gather

Research output: Contribution to journalArticlepeer-review

53 Citations (Scopus)
1 Downloads (Pure)


As solid‐state light sources based on amorphous organic semiconductors, organic light‐emitting diodes (OLEDs) are widely used in modern smartphone displays and TVs. Due to the dramatic improvements in stability, efficiency, and brightness achieved over the last three decades, OLEDs have also become attractive light sources for compact and “imperceptible” biomedical devices that use light to probe, image, manipulate, or treat biological matter. The inherent mechanical flexibility of OLEDs and their compatibility with a wide range of substrates and geometries are of particular benefit in this context. Here, recent progress in the development and use of OLEDs for biomedical applications is reviewed. The specific requirements that this poses are described and compared to the current state of the art, in particular in terms of the brightness, patterning, stability, and encapsulation of OLEDs. Examples from several main areas are then discussed in some detail: on‐chip sensing and integration with microfluidics, wearable devices for optical monitoring, therapeutic devices, and the emerging use in neuroscience for targeted photostimulation via optogenetics. The review closes with a brief outlook on future avenues to scale the manufacturing of OLED‐based devices for biomedical use.
Original languageEnglish
Article number2100269
Number of pages22
JournalAdvanced Optical Materials
Issue number14
Early online date17 May 2021
Publication statusPublished - 10 Jul 2021


  • Biointegrated electronics
  • Biophotonics
  • Organic LEDs
  • Photomedicine
  • Transient electronics


Dive into the research topics of 'Emerging biomedical applications of organic light-emitting diodes'. Together they form a unique fingerprint.

Cite this