Emergent patterns of population genetic structure for a coral reef community

Kimberly A. Selkoe*, Oscar E. Gaggiotti, ToBo Lab, Brian W. Bowen, Robert J. Toonen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

89 Citations (Scopus)

Abstract

What shapes variation in genetic structure within a community of codistributed species is a central but difficult question for the field of population genetics. With a focus on the isolated coral reef ecosystem of the Hawaiian Archipelago, we assessed how life history traits influence population genetic structure for 35 reef animals. Despite the archipelago's stepping stone configuration, isolation by distance was the least common type of genetic structure, detected in four species. Regional structuring (i.e. division of sites into genetically and spatially distinct regions) was most common, detected in 20 species and nearly in all endemics and habitat specialists. Seven species displayed chaotic (spatially unordered) structuring, and all were nonendemic generalist species. Chaotic structure also associated with relatively high global FST. Pelagic larval duration (PLD) was not a strong predictor of variation in population structure (R2=0.22), but accounting for higher FST values of chaotic and invertebrate species, compared to regionally structured and fish species, doubled the power of PLD to explain variation in global FST (adjusted R2=0.50). Multivariate correlation of eight species traits to six genetic traits highlighted dispersal ability, taxonomy (i.e. fish vs. invertebrate) and habitat specialization as strongest influences on genetics, but otherwise left much variation in genetic traits unexplained. Considering that the study design controlled for many sampling and geographical factors, the extreme interspecific variation in spatial genetic patterns observed for Hawaii marine species may be generated by demographic variability due to species-specific abundance and migration patterns and/or seascape and historical factors.

Original languageEnglish
Pages (from-to)3064-3079
Number of pages16
JournalMolecular Ecology
Volume23
Issue number12
Early online date16 Jun 2014
DOIs
Publication statusPublished - 16 Jun 2014

Keywords

  • Chaotic genetic heterogeneity
  • Community genetics
  • Hawaii
  • Marine connectivity
  • Pelargic larval duration
  • Stepping stone dispersal

Fingerprint

Dive into the research topics of 'Emergent patterns of population genetic structure for a coral reef community'. Together they form a unique fingerprint.

Cite this