TY - JOUR
T1 - Emergent and broken symmetries of atomic self-organization arising from Gouy phase shifts in multimode cavity QED
AU - Guo, Yudan
AU - Vaidya, Varun D.
AU - Kroeze, Ronen M.
AU - Lunney, Rhiannon A.
AU - Lev, Benjamin L.
AU - Keeling, Jonathan
N1 - Funding: Army Research Office, the National Science Foundation under Grant No. CCF-1640075, and the Semiconductor Research Corporation under Grant No. 2016-EP-2693-C. J. K. acknowledges support from SU2P.
PY - 2019/5
Y1 - 2019/5
N2 - Optical cavities can induce photon-mediated interactions among intracavity-trapped atoms. Multimode cavities provide the ability to tune the form of these interactions, e.g., by inducing a nonlocal sign-changing term to the interaction. By accounting for the Gouy phase shifts of the modes in a nearly degenerate, confocal, Fabry-Pérot cavity, we provide a theoretical description of this interaction, along with additional experimental confirmation to complement that presented in the companion paper [Y. Guo et al., Phys. Rev. Lett. 122, 193601 (2019)]. Furthermore, we show that this interaction should be written in terms of a complex order parameter, allowing for a U(1) symmetry to emerge. This symmetry corresponds to the phase of the atomic density wave arising from self-organization when the cavity is transversely pumped above a critical threshold power. We show theoretically and experimentally how this phase depends on the position of the Bose-Einstein condensate within the cavity and discuss mechanisms that break the U(1) symmetry and lock this phase. We then consider alternative Fabry-Pérot multimode cavity geometries (i.e., beyond the confocal) and schemes with more than one pump laser and show that these provide additional capabilities for tuning the cavity-meditated interaction among atoms, including the ability to restore the U(1) symmetry despite the presence of symmetry-breaking effects. These photon-mediated interactions may be exploited for realizing quantum liquid crystalline states and spin glasses using multimode optical cavities.
AB - Optical cavities can induce photon-mediated interactions among intracavity-trapped atoms. Multimode cavities provide the ability to tune the form of these interactions, e.g., by inducing a nonlocal sign-changing term to the interaction. By accounting for the Gouy phase shifts of the modes in a nearly degenerate, confocal, Fabry-Pérot cavity, we provide a theoretical description of this interaction, along with additional experimental confirmation to complement that presented in the companion paper [Y. Guo et al., Phys. Rev. Lett. 122, 193601 (2019)]. Furthermore, we show that this interaction should be written in terms of a complex order parameter, allowing for a U(1) symmetry to emerge. This symmetry corresponds to the phase of the atomic density wave arising from self-organization when the cavity is transversely pumped above a critical threshold power. We show theoretically and experimentally how this phase depends on the position of the Bose-Einstein condensate within the cavity and discuss mechanisms that break the U(1) symmetry and lock this phase. We then consider alternative Fabry-Pérot multimode cavity geometries (i.e., beyond the confocal) and schemes with more than one pump laser and show that these provide additional capabilities for tuning the cavity-meditated interaction among atoms, including the ability to restore the U(1) symmetry despite the presence of symmetry-breaking effects. These photon-mediated interactions may be exploited for realizing quantum liquid crystalline states and spin glasses using multimode optical cavities.
U2 - 10.1103/PhysRevA.99.053818
DO - 10.1103/PhysRevA.99.053818
M3 - Article
SN - 1050-2947
VL - 99
JO - Physical Review. A, Atomic, molecular, and optical physics
JF - Physical Review. A, Atomic, molecular, and optical physics
IS - 5
M1 - 053818
ER -