TY - JOUR
T1 - Elemental abundances of major elements in the solar wind as measured in Genesis targets and implications on solar wind fractionation
AU - Heber, Veronika
AU - McKeegan, Kevin
AU - Steele, Robert C. J.
AU - Jurewicz, Amy
AU - Rieck, Karen
AU - Guan, Yunbin
AU - Wieler, Rainer
AU - Burnett, Donald S.
N1 - The UCLA ion microprobe facility is partially supported by a grant from the NSF Instrumentation and Facilities program. V. S. Heber thanks NASA for financial support. This work was supported by grants from the NASA Laboratory Analysis of Returned Samples (LARS) program (NASA LARS 80NSSC17K0025 to D. S. Burnett and A. J. G. Jurewicz). R. Wieler acknowledges the hospitality of Caltech's Division of
Geologial and Planetary Sciences during his stay in Pasadena.
PY - 2021/1/20
Y1 - 2021/1/20
N2 - We present elemental abundance data of C, N, O, Na, Mg, Al, Ca, and Cr in Genesis silicon targets. For Na, Mg, Al, and Ca, data from three different SW regimes are also presented. Data were obtained by backside depth profiling using Secondary Ion Mass Spectrometry. The accuracy of these measurements exceeds those obtained by in-situ observations; therefore the Genesis data provide new insights into elemental fractionation between Sun and solar wind, including differences between solar wind regimes. We integrate previously published noble gas and hydrogen elemental abundances from Genesis targets, as well as preliminary values for K and Fe. The abundances of the solar wind elements measured display the well-known fractionation pattern that correlates with each element's First Ionization Potential (FIP). When normalized either to spectroscopic photospheric solar abundances or to those derived from CI-chondritic meteorites, the fractionation factors of low-FIP elements (K, Na, Al, Ca, Cr, Mg, Fe) are essentially identical within uncertainties, but the data are equally consistent with an increasing fractionation with decreasing FIP. The elements with higher FIPs between ~11 and ~16 eV (C, N, O, H, Ar, Kr, Xe) display a relatively well-defined trend of increasing fractionation with decreasing FIP, if normalized to modern 3D photospheric model abundances. Among the three Genesis regimes, the Fast SW displays the least elemental fractionation for almost all elements (including the noble gases) but differences are modest: for low-FIP elements the precisely measured Fast-Slow SW variations are less than 3%.
AB - We present elemental abundance data of C, N, O, Na, Mg, Al, Ca, and Cr in Genesis silicon targets. For Na, Mg, Al, and Ca, data from three different SW regimes are also presented. Data were obtained by backside depth profiling using Secondary Ion Mass Spectrometry. The accuracy of these measurements exceeds those obtained by in-situ observations; therefore the Genesis data provide new insights into elemental fractionation between Sun and solar wind, including differences between solar wind regimes. We integrate previously published noble gas and hydrogen elemental abundances from Genesis targets, as well as preliminary values for K and Fe. The abundances of the solar wind elements measured display the well-known fractionation pattern that correlates with each element's First Ionization Potential (FIP). When normalized either to spectroscopic photospheric solar abundances or to those derived from CI-chondritic meteorites, the fractionation factors of low-FIP elements (K, Na, Al, Ca, Cr, Mg, Fe) are essentially identical within uncertainties, but the data are equally consistent with an increasing fractionation with decreasing FIP. The elements with higher FIPs between ~11 and ~16 eV (C, N, O, H, Ar, Kr, Xe) display a relatively well-defined trend of increasing fractionation with decreasing FIP, if normalized to modern 3D photospheric model abundances. Among the three Genesis regimes, the Fast SW displays the least elemental fractionation for almost all elements (including the noble gases) but differences are modest: for low-FIP elements the precisely measured Fast-Slow SW variations are less than 3%.
KW - Solar wind
KW - Solar abundances
KW - Fast solar wind
KW - Slow solar wind
KW - Solar coronal mass ejections
KW - Chemical abundances
U2 - 10.3847/1538-4357/abc94a
DO - 10.3847/1538-4357/abc94a
M3 - Article
SN - 0004-637X
VL - 907
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 15
ER -