Abstract
The electrochemical properties and long-term performance of an in-situ composite cathode comprised of SmBa0.5Sr0.5Co2O5+δ (SBSCO) and Ce0.9Gd0.1O2−δ (CGO91) are investigated for metal supported solid oxide fuel cell (MS-SOFC) application.
The Area Specific Resistance (ASR) of an in-situ composite cathode comprised of 50 wt% of SBSCO and 50 wt% of CGO91 (SBSCO:50) is 0.031 Ω cm2 in the first stage of measurement at 700 °C; this value of ASR increases to 0.138 Ω cm2 after 1000 h. The ASR of SBSCO:50 (in-situ sample at 750 °C) is 0.014 Ω cm2 at the initial stage of measurement; the increase of ASR after 1000 h at 750 °C is only 0.067 Ω cm2. These results suggest that the optimum temperature for in-situ firing of an SBSCO:50 cathode sample of MS-SOFC is higher than 700 °C, ideally around 750 °C.
The Area Specific Resistance (ASR) of an in-situ composite cathode comprised of 50 wt% of SBSCO and 50 wt% of CGO91 (SBSCO:50) is 0.031 Ω cm2 in the first stage of measurement at 700 °C; this value of ASR increases to 0.138 Ω cm2 after 1000 h. The ASR of SBSCO:50 (in-situ sample at 750 °C) is 0.014 Ω cm2 at the initial stage of measurement; the increase of ASR after 1000 h at 750 °C is only 0.067 Ω cm2. These results suggest that the optimum temperature for in-situ firing of an SBSCO:50 cathode sample of MS-SOFC is higher than 700 °C, ideally around 750 °C.
Original language | English |
---|---|
Pages (from-to) | 1212-1220 |
Number of pages | 9 |
Journal | International Journal of Hydrogen Energy |
Volume | 42 |
Issue number | 2 |
Early online date | 17 Nov 2016 |
DOIs | |
Publication status | Published - 12 Jan 2017 |
Keywords
- Metal supported solid oxide fuel cell
- Sr doped layered perovskite
- Area specific resistance
- In-situ cathode
- Sintering effect