Electrochemical activation applied to perovskite titanate fibres to yield supported alloy nanoparticles for electrocatalytic application

Min Xu, Chencheng Liu, Aaron Benjamin Naden, Herbert Fruchtl, Michael Buehl, John Thomas Sirr Irvine*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Active bi-metallic nanoparticles are of key importance in catalysis and renewable energy. Here, the in situ formation of bi-metallic nanoparticles is investigated by exsolution on 200 nm diameter perovskite fibers. The B-site co-doped perovskite fibers display a high degree of exsolution, decorated with NiCo or Ni3Fe bi-metallic nanoparticles with average diameter about 29 and 35 nm, respectively. The perovskite fibers are utilized as cathode materials in pure CO2 electrolysis cells due to their redox stability in the CO/CO2 atmosphere. After in situ electrochemical switching, the nanoparticles exsolved from the perovskite fiber demonstrate an enhanced performance in pure CO2 electrolysis. At 900 °C, the current density of solid oxide electrolysis cell (SOEC) with 200 µm YSZ electrolyte supported NiFe doped perovskite fiber anode reaches 0.75 Acm−2 at 1.6 V superior to the NiCo doped perovskite fiber anode (about 1.5 times) in pure CO2. According to DFT calculations (PBE-D3 level) the superior CO2 conversion on NiFe compared to NiCo bi-metallic species is related to an enhanced driving force for C-O cleavage under formation of CO chemisorbed on the nanoparticle and a reduced binding energy of CO required to release this product.
Original languageEnglish
Article number2204682
Number of pages12
JournalSmall
Volume19
Issue number1
Early online date13 Nov 2022
DOIs
Publication statusPublished - 4 Jan 2023

Keywords

  • CO2 electrolysis
  • Electrochemical activation
  • Exsolution
  • Fiber
  • Perovskite

Fingerprint

Dive into the research topics of 'Electrochemical activation applied to perovskite titanate fibres to yield supported alloy nanoparticles for electrocatalytic application'. Together they form a unique fingerprint.

Cite this