Abstract
Background. Cryptococcal meningitis (CM) is a leading cause of HIV-associated mortality globally. High fungal burden in cerebrospinal fluid (CSF) at diagnosis and poor fungal clearance during treatment are recognized adverse prognostic markers; however, the underlying pathogenic factors that drive these clinical manifestations are incompletely understood. We profiled a large set of clinical isolates for established cryptococcal virulence traits to evaluate the contribution of C. neoformans phenotypic diversity to clinical presentation and outcome in human cryptococcosis.
Methods. Sixty-five C. neoformans isolates from clinical trial patients with matched clinical data were assayed in vitro to determine murine macrophage uptake, intracellular proliferation rate (IPR), capsule induction, and laccase activity. Analysis of the correlation between prognostic clinical and host immune parameters and fungal phenotypes was performed using Spearman's r, while the fungal-dependent impact on long-term survival was determined by Cox regression analysis. Results. High levels of fungal uptake by macrophages in vitro, but not the IPR, were associated with CSF fungal burden (r = 0.38, P = 0.002) and long-term patient survival (hazard ratio [HR] 2.6, 95% CI 1.2-5.5, P = 0.012). High-uptake strains were hypocapsular (r = -0.28, P = 0.05) and exhibited enhanced laccase activity (r = 0.36, P = 0.003). Fungal isolates with greater laccase activity exhibited heightened survival ex vivo in purified CSF (r = 0.49, P P = 0.05) and exhibited enhanced laccase activity (r = 0.36, P = 0.003). Fungal isolates with greater laccase activity exhibited heightened survival ex vivo in purified CSF (r = 0.49, P < 0.0001) and resistance to clearance following patient antifungal treatment (r = 0.39, P = 0.003).
Conclusion. These findings underscore the contribution of cryptococcal-phagocyte interactions and laccase-dependent melanin pathways to human clinical presentation and outcome. Furthermore, characterization of fungal-specific pathways that drive clinical manifestation provide potential targets for the development of therapeutics and the management of CM.
Methods. Sixty-five C. neoformans isolates from clinical trial patients with matched clinical data were assayed in vitro to determine murine macrophage uptake, intracellular proliferation rate (IPR), capsule induction, and laccase activity. Analysis of the correlation between prognostic clinical and host immune parameters and fungal phenotypes was performed using Spearman's r, while the fungal-dependent impact on long-term survival was determined by Cox regression analysis. Results. High levels of fungal uptake by macrophages in vitro, but not the IPR, were associated with CSF fungal burden (r = 0.38, P = 0.002) and long-term patient survival (hazard ratio [HR] 2.6, 95% CI 1.2-5.5, P = 0.012). High-uptake strains were hypocapsular (r = -0.28, P = 0.05) and exhibited enhanced laccase activity (r = 0.36, P = 0.003). Fungal isolates with greater laccase activity exhibited heightened survival ex vivo in purified CSF (r = 0.49, P P = 0.05) and exhibited enhanced laccase activity (r = 0.36, P = 0.003). Fungal isolates with greater laccase activity exhibited heightened survival ex vivo in purified CSF (r = 0.49, P < 0.0001) and resistance to clearance following patient antifungal treatment (r = 0.39, P = 0.003).
Conclusion. These findings underscore the contribution of cryptococcal-phagocyte interactions and laccase-dependent melanin pathways to human clinical presentation and outcome. Furthermore, characterization of fungal-specific pathways that drive clinical manifestation provide potential targets for the development of therapeutics and the management of CM.
Original language | English |
---|---|
Pages (from-to) | 2000-2008 |
Number of pages | 9 |
Journal | The Journal of Clinical Investigation |
Volume | 124 |
Issue number | 5 |
Early online date | 17 Apr 2014 |
DOIs | |
Publication status | Published - 1 May 2014 |
Fingerprint
Dive into the research topics of 'Efficient phagocytosis and laccase activity affect the outcome of HIV-associated cryptococcosis'. Together they form a unique fingerprint.Profiles
-
Wilber Sabiiti
- School of Medicine - Principal Research Fellow
- Infection and Global Health Division
Person: Academic - Research