Abstract
1. A two-microelectrode voltage clamp was used to determine the effects of n-butanol, n-hexanol, n-octanol, n-decanol and methyl hexanoate on a transient potassium (IA) current in identified Helix aspersa neurones. Experiments were carried out at a temperature of 10-12 degrees C. 2. Each n-alkanol reversibly reduced the amplitude of the IA current. Logarithmic dose-response curves for the current reduction by each homologue were sigmoidal and had slope factors of around four. The concentrations required to reduce the peak (with time) current at -30 mV by 50% (ED50 +/- fitted standard error) were: 57 +/- 5 mM (n-butanol); 2.0 +/- 0.1 mM (n-hexanol); 0.28 +/- 0.02 mM (n-octanol) and 0.016 +/- 0.001 mM (n-decanol). Methyl hexanoate also reduced the current amplitude, with an ED50 of 1-2 mM. The Helix IA current thus showed a similar sensitivity to n-alkanols to that of squid and rat sodium currents but was rather more sensitive than the squid delayed rectifier potassium current. 3. The n-alkanol ED50 concentrations were used to calculate a standard free energy per methylene group for adsorption to a site of action in the cell of -3.1 +/- 0.2 kJ/mol. This suggested a hydrophobic site or sites of action. The regularity of the change in free energy with chain length was maintained up to, and including, n-decanol. This implied that the site(s) could accommodate a ten-carbon chain as readily as an eight-carbon chain. 4. The voltage dependencies of IA current activation and steady-state inactivation were not consistently altered by treatment with n-alkanols at concentrations around or above their current suppression ED50 concentrations. 5. The kinetics of current activation and inactivation were affected, particularly by lower chain length compounds. At 60 mM n-butanol reduced the time constant for development of inactivation of open channels (tau b) by 56%, while 0.016 mM n-decanol produced only a 13% reduction. n-Butanol (60 mM) also caused a substantial (76%) reduction in the time constant for development of inactivation in channels which were presumed to be closed. The effects of n-alkanols on the current time-to-peak (tc) were complex, showing both increases and decreases, but these actions also declined with chain length. Methyl hexanoate (1 mM) reduced tau b by around 30% and tc by around 20%. 6. n-Alkanols have now been shown to inhibit a number of voltage-gated ion conductances.(ABSTRACT TRUNCATED AT 400 WORDS)
Original language | English |
---|---|
Pages (from-to) | 1-17 |
Number of pages | 17 |
Journal | The Journal of Physiology |
Volume | 456 |
DOIs | |
Publication status | Published - Oct 1992 |
Keywords
- Action Potentials/drug effects
- Alcohols/pharmacology
- Animals
- Caproates/pharmacology
- Dose-Response Relationship, Drug
- Helix, Snails
- In Vitro Techniques
- Membrane Potentials/drug effects
- Neurons/metabolism
- Potassium Channels/drug effects