Effects of lesions of the subthalamic nucleus/zona incerta area and dorsomedial striatum on attentional set-shifting in the rat

David S. Tait, Janice M. Phillips, Andrew D. Blackwell, Verity J. Brown

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)
2 Downloads (Pure)


Patients with Parkinson’s disease show cognitive impairments, including difficulty in shifting attention between perceptual dimensions of complex stimuli. Inactivation of the subthalamic nucleus (STN) has been shown to be effective in ameliorating the motor abnormalities associated with striatal dopamine depletion, but it is possible that STN inactivation might result in additional, perhaps attentional, deficits. This study examined the effects of: dopamine depletion from the dorsomedial striatum (DMS); lesions of the STN area; and the effects of the two lesions together, on the ability to shift attentional set in the rat. In a single session, rats performed the intradimensional/extradimensional (ID/ED) test of attentional set-shifting. This comprises a series of seven, two-choice discriminations, including acquisitions of novel discriminations in which the relevant stimulus is either in the
currently-attended dimension (ID) or the currently-unattended dimension (ED shift) and reversals following each acquisition stage. Bilateral lesions were made by injection of 6-hydroxydopamine into the DMS, resulting in a selective impairment in reversal learning. Large bilateral ibotenic acid lesions centred on the STN resulted in an increase in trials to criterion in the initial stages, but learning rate improved within the session. There was no evidence of a ‘cost’ of set-shifting – the ED stage was completed in fewer trials than the ID stage – and neither was there a cost of reversal learning. Strikingly, combined lesions of both regions did not resemble the effects of either lesion alone and resulted in no apparent deficits.
Original languageEnglish
Pages (from-to)287-296
Number of pages10
Early online date12 Aug 2016
Publication statusPublished - 14 Mar 2017


  • Basal ganglia
  • Parkinson's disease
  • Dopamine
  • Subthalmic nucleus
  • Attentional set-shifting


Dive into the research topics of 'Effects of lesions of the subthalamic nucleus/zona incerta area and dorsomedial striatum on attentional set-shifting in the rat'. Together they form a unique fingerprint.

Cite this