Abstract
The perovskite La0.15Sm0.35Sr0.08Ba0.42FeO3 − δ has been prepared by the glycine nitrate (GNC) route, varying the fuel/oxidizer ratio (glycine/nitrate, G/N = 1 and 2) and cooling rate (slow cooling and air-quenched), in order to study the influence of sample preparation on the materials' properties, in the context of their application as a cathode material for SOFCs. For this, the performance of the prepared mixed ion and electron conducting perovskite oxides is dictated by their structure, oxygen stoichiometry (3 − δ), chemical composition and thermal expansion properties. High-resolution Synchrotron X-ray powder diffraction patterns were collected at room temperature and at 700 and 800 °C. It was found that the materials had a cubic crystal structure at these temperatures. As expected, 3 − δ decreased as temperature increased, and was slightly smaller for the quenched sample. Higher electrical conductivity values were obtained for the sample with G/N = 1 (air-quenched) in the cooling rate. At 700 and 800 °C the cathode synthesized with G/N = 1 and air-quenched showed the smallest polarization resistance values in impedance spectroscopy studies. Therefore, the physicochemical and electrochemical characterization clearly demonstrated the influence of the synthetic conditions on the cathode performance.
| Original language | English |
|---|---|
| Pages (from-to) | 131-139 |
| Number of pages | 9 |
| Journal | Powder Technology |
| Volume | 322 |
| Early online date | 13 Sept 2017 |
| DOIs | |
| Publication status | Published - Dec 2017 |
Keywords
- Chemical synthesis
- Oxygen content
- Cathode material
- SOFC
- Impedance spectroscopy