TY - JOUR
T1 - Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block, South China
AU - Shu, L.
AU - Wang, B.
AU - Cawood, Peter Anthony
AU - Santosh, M.
AU - Xu, Z.
N1 - The authors acknowledge financial supports provided by the National Basic Research Program of China (973 program, 2012CB416701), National Natural Science Foundation of China (41330208 and 41272226), and the Bureau of China Geological Survey (201211093-1).
PY - 2015/8/8
Y1 - 2015/8/8
N2 - The geodynamic framework of the South China Craton in the Early Paleozoic and Early Mesozoic has been modeled as developing through either oceanic convergence or intracontinental settings. On the basis of an integrated structural, geochemical, zircon U-Pb and Hf isotopic, and mica 40Ar/39Ar geochronologic study we establish that an intracontinental setting is currently the best fit for the available data. Our results suggest that widespread tectonomagmatic activity involving granite emplacement and mylonitic deformation occurred during two distinct stages: ~435-415 Ma and ~230-210 Ma. The coeval nature of emplacement of the plutons and their ductile deformation is corroborated by the subparallel orientation of the mylonitic foliation along the pluton margins, gneissose foliation in the middle part of pluton, the magmatic foliation within the plutons, and the schistosity in the surrounding metamorphosed country rocks. The 435-415 Ma granitoids exhibit peraluminous, high-K characteristics, and zircons show negative εHf(t) values (average -6.2, n = 66), and Paleoproterozoic two-stage model ages of circa 2.21-1.64 Ga (average 1.84 Ga). The data suggest that the Early Paleozoic plutons were derived from the partial melting of the Paleoproterozoic basement of the Cathaysia Block. The 230-210 Ma granites are potassic and have zircons with εHf(t) values of -2.8 - 8.7 (average -5.4, n = 62), corresponding to TDM2 ages ranging from 2.0 to 1.44 Ga (average 1.64 Ga), suggesting that the Early Mesozoic partial melts in Cathaysia were also derived from basement. The geochemical distinction between the two phases of granites traces continental crustal evolution with time, with the Early Mesozoic crust enriched in potassium, silicon, and aluminum, but deficient in calcium, relative to the Paleozoic crust. Kinematical investigations provide evidence for an early-stage ductile deformation with a doubly vergent thrusting pattern dated at 433 ± 1 to 428 ± 1 Ma (40Ar/39Ar furnace step-heating pseudoplateau ages obtained on muscovite and biotite from mylonite and deformed granite) and a late-stage strike-slip movement with sinistral sense of ductile shearing at 232 ± 1 to 234 ± 1 Ma (40Ar/39Ar furnace step-heating pseudoplateau ages) along an E-W direction. The geological, geochemical, and isotopic signatures likely reflect far-field effects in response to continental assembly events at these times.
AB - The geodynamic framework of the South China Craton in the Early Paleozoic and Early Mesozoic has been modeled as developing through either oceanic convergence or intracontinental settings. On the basis of an integrated structural, geochemical, zircon U-Pb and Hf isotopic, and mica 40Ar/39Ar geochronologic study we establish that an intracontinental setting is currently the best fit for the available data. Our results suggest that widespread tectonomagmatic activity involving granite emplacement and mylonitic deformation occurred during two distinct stages: ~435-415 Ma and ~230-210 Ma. The coeval nature of emplacement of the plutons and their ductile deformation is corroborated by the subparallel orientation of the mylonitic foliation along the pluton margins, gneissose foliation in the middle part of pluton, the magmatic foliation within the plutons, and the schistosity in the surrounding metamorphosed country rocks. The 435-415 Ma granitoids exhibit peraluminous, high-K characteristics, and zircons show negative εHf(t) values (average -6.2, n = 66), and Paleoproterozoic two-stage model ages of circa 2.21-1.64 Ga (average 1.84 Ga). The data suggest that the Early Paleozoic plutons were derived from the partial melting of the Paleoproterozoic basement of the Cathaysia Block. The 230-210 Ma granites are potassic and have zircons with εHf(t) values of -2.8 - 8.7 (average -5.4, n = 62), corresponding to TDM2 ages ranging from 2.0 to 1.44 Ga (average 1.64 Ga), suggesting that the Early Mesozoic partial melts in Cathaysia were also derived from basement. The geochemical distinction between the two phases of granites traces continental crustal evolution with time, with the Early Mesozoic crust enriched in potassium, silicon, and aluminum, but deficient in calcium, relative to the Paleozoic crust. Kinematical investigations provide evidence for an early-stage ductile deformation with a doubly vergent thrusting pattern dated at 433 ± 1 to 428 ± 1 Ma (40Ar/39Ar furnace step-heating pseudoplateau ages obtained on muscovite and biotite from mylonite and deformed granite) and a late-stage strike-slip movement with sinistral sense of ductile shearing at 232 ± 1 to 234 ± 1 Ma (40Ar/39Ar furnace step-heating pseudoplateau ages) along an E-W direction. The geological, geochemical, and isotopic signatures likely reflect far-field effects in response to continental assembly events at these times.
KW - Granitoids
KW - Mylonites
KW - Geochronology
KW - Hf signature of zircon
KW - Two-phase tectonomagmatic events
KW - South China
UR - http://onlinelibrary.wiley.com/doi/10.1002/2015TC003835/suppinfo
U2 - 10.1002/2015TC003835
DO - 10.1002/2015TC003835
M3 - Article
AN - SCOPUS:84941878099
SN - 0278-7407
VL - 34
SP - 1600
EP - 1621
JO - Tectonics
JF - Tectonics
IS - 8
ER -