Projects per year
Abstract
Reverberation mapping (RM) is a powerful approach for determining the nature of the broad-line region (BLR) in active galactic nuclei. However, inferring physical BLR properties from an observed spectroscopic time series is a difficult inverse problem. Here, we present a blind test of two widely used RM methods: MEMEcho (developed by Horne) and CARAMEL (developed by Pancoast and collaborators). The test data are simulated spectroscopic time series that track the Hα emission line response to an empirical continuum light curve. The underlying BLR model is a rotating, biconical accretion disc wind, and the synthetic spectra are generated via self-consistent ionization and radiative transfer simulations. We generate two mock data sets, representing Seyfert galaxies and QSOs. The Seyfert model produces a largely negative response, which neither method can recover. However, both fail “gracefully”, neither generating spurious results. For the QSO model both CARAMEL and expert interpretation of MEMEchoś output both capture the broadly annular, rotation-dominated nature of the line-forming region, though MEMEcho analysis overestimates its size by 50%, but CARAMEL is unable to distinguish between additional inflow and outflow components. Despite fitting individual spectra well, the CARAMEL velocity-delay maps and RMS line profiles are strongly inconsistent with the input data. Finally, since the Hα line-forming region is rotation dominated, neither method recovers the disc wind nature of the underlying BLR model. Thus considerable care is required when interpreting the results of RM analyses in terms of physical models.
Original language | English |
---|---|
Pages (from-to) | 2780-2799 |
Journal | Monthly Notices of the Royal Astronomical Society |
Volume | 488 |
Issue number | 2 |
Early online date | 21 Jun 2019 |
DOIs | |
Publication status | Published - Sept 2019 |
Keywords
- Accretion discs
- Radiative transfer
- Quasars: general
Fingerprint
Dive into the research topics of 'Do reverberation mapping analyses provide an accurate picture of the broad line region?'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Astronomy at St Andrews 2018-2021: Astronomy at St Andrews 2018-2021
Jardine, M. M. (PI), Bonnell, I. A. (CoI), Cameron, A. C. (CoI), Cyganowski, C. J. (CoI), Dominik, M. (CoI), Helling, C. (CoI), Horne, K. D. (CoI), Scholz, A. (CoI), Tojeiro, R. (CoI), Weijmans, A.-M. (CoI), Wild, V. (CoI), Woitke, P. (CoI), Wood, K. (CoI) & Zhao, H. (CoI)
1/04/18 → 31/03/22
Project: Standard