Abstract
An ultrathin layer of deep-red phosphorescent emitter tris(1-phenylisoquinoline) iridium (III) (Ir(piq)3) is inserted within different positions of the electron blocking layer fac-tris (1-phenylpyrazolato-N,C2')-iridium(III) (Ir(ppz)3) to distinguish the contribution of the emission from the triplet exciton energy transfer/diffusion from the adjacent blue phosphorescent emitter and the trap-assisted recombination from the narrow band-gap emitter itself. The charge trapping effect of the narrow band-gap deep-red emitter which forms a quantum-well-like structure also plays a role in shaping the electroluminescent characteristics of multi-color organic light-emitting diodes. By accurately controlling the position of the ultrathin sensing layer, it is considerably easy to balance the white emission which is quite challenging for full-color devices with multiple emission zones. There is nearly no energy transfer detectable if 7 nm thick Ir(ppz)3 is inserted between the blue phosphorescent emitter and the ultrathin red emitter.
Original language | English |
---|---|
Article number | 114504 |
Number of pages | 6 |
Journal | Journal of Applied Physics |
Volume | 115 |
Issue number | 11 |
DOIs | |
Publication status | Published - 19 Mar 2014 |