Dispersal and population structure at different spatial scales in the subterranean rodent Ctenomys australis

Matias S. Mora*, Fernando J. Mapelli, Oscar E. Gaggiotti, Marcelo J. Kittlein, Enrique P. Lessa

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)
5 Downloads (Pure)

Abstract

Background: The population genetic structure of subterranean rodent species is strongly affected by demographic (e.g. rates of dispersal and social structure) and stochastic factors (e.g. random genetic drift among subpopulations and habitat fragmentation). In particular, gene flow estimates at different spatial scales are essential to understand genetic differentiation among populations of a species living in a highly fragmented landscape. Ctenomys australis (the sand dune tuco-tuco) is a territorial subterranean rodent that inhabits a relatively secure, permanently sealed burrow system, occurring in sand dune habitats on the coastal landscape in the south-east of Buenos Aires province, Argentina. Currently, this habitat is threatened by urban development and forestry and, therefore, the survival of this endemic species is at risk. Here, we assess population genetic structure and patterns of dispersal among individuals of this species at different spatial scales using 8 polymorphic microsatellite loci. Furthermore, we evaluate the relative importance of sex and habitat configuration in modulating the dispersal patterns at these geographical scales.

Results: Our results show that dispersal in C. australis is not restricted at regional spatial scales (similar to 4 km). Assignment tests revealed significant population substructure within the study area, providing support for the presence of two subpopulations from three original sampling sites. Finally, male-biased dispersal was found in the Western side of our study area, but in the Eastern side no apparent philopatric pattern was found, suggesting that in a more continuous habitat males might move longer distances than females.

Conclusions: Overall, the assignment-based approaches were able to detect population substructure at fine geographical scales. Additionally, the maintenance of a significant genetic structure at regional (similar to 4 km) and small (less than 1 km) spatial scales despite apparently moderate to high levels of gene flow between local sampling sites could not be explained simply by the linear distance among them. On the whole, our results support the hypothesis that males disperse more frequently than females; however they do not provide support for strict philopatry within females.

Original languageEnglish
Article number9
Number of pages14
JournalBMC Genetics
Volume11
DOIs
Publication statusPublished - 28 Jan 2010

Keywords

  • Tuco-tuco
  • Multilocus genotype data
  • Environmental-factors
  • Allele frequencies
  • Microtus-arvalis
  • Biased dispersal
  • Autocorrelation analysis
  • Assignment methods
  • Genetic-structure
  • Computer-program

Fingerprint

Dive into the research topics of 'Dispersal and population structure at different spatial scales in the subterranean rodent Ctenomys australis'. Together they form a unique fingerprint.

Cite this