Projects per year
Abstract
Methods to generate spin-polarized electronic states in non-magnetic solids are strongly desired to enable all-electrical manipulation of electron spins for new quantum devices1. This is generally accepted to require breaking global structural inversion symmetry1, 2, 3, 4, 5. In contrast, here we report the observation from spin- and angle-resolved photoemission spectroscopy of spin-polarized bulk states in the centrosymmetric transition-metal dichalcogenide WSe2. Mediated by a lack of inversion symmetry in constituent structural units of the bulk crystal where the electronic states are localized6, we show how spin splittings up to ∼0.5 eV result, with a spin texture that is strongly modulated in both real and momentum space. Through this, our study provides direct experimental evidence for a putative locking of the spin with the layer and valley pseudospins in transition-metal dichalcogenides7, 8, of key importance for using these compounds in proposed valleytronic devices.
Original language | English |
---|---|
Pages (from-to) | 835–839 |
Number of pages | 5 |
Journal | Nature Physics |
Volume | 10 |
Issue number | 11 |
Early online date | 5 Oct 2014 |
DOIs | |
Publication status | Published - Nov 2014 |
Fingerprint
Dive into the research topics of 'Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor'. Together they form a unique fingerprint.Projects
- 2 Finished
-
-
Topological Protection and NonEquilibriu: Topological Protection and NonEquilibrium States in Strongly Correlated Electron Systems
Wahl, P. (PI), Baumberger, F. (CoI), Davis, J. C. (CoI), Green, A. (CoI), Hooley, C. (CoI), Keeling, J. M. J. (CoI) & Mackenzie, A. (CoI)
1/09/11 → 31/08/17
Project: Standard