Development of quantum perspectives in modern physics

Charles Baily, Noah D. Finkelstein

Research output: Contribution to journalArticlepeer-review

Abstract

Introductory undergraduate courses in classical physics stress a perspective that can be characterized as realist; from this perspective, all physical properties of a classical system can be simultaneously specified and thus determined at all future times. Such a perspective can be problematic for introductory quantum physics students, who must develop new perspectives in order to properly interpret what it means to have knowledge of quantum systems. We document this evolution in student thinking in part through pre- and post-instruction evaluations using the Colorado Learning Attitudes about Science Survey. We further characterize variations in student epistemic and ontological commitments by examining responses to two essay questions, coupled with responses to supplemental quantum attitude statements. We find that, after instruction in modern physics, many students are still exhibiting a realist perspective in contexts where a quantum-mechanical perspective is needed. We further find that this effect can be significantly influenced by instruction, where we observe variations for courses with differing learning goals. We also note that students generally do not employ either a realist or a quantum perspective in a consistent manner.
Original languageEnglish
Article number010106
Number of pages8
JournalPhysical Review Special Topics - Physics Education Research
Volume5
Issue number1
DOIs
Publication statusPublished - 23 Mar 2009

Keywords

  • Quantum physics
  • Physics education research

Fingerprint

Dive into the research topics of 'Development of quantum perspectives in modern physics'. Together they form a unique fingerprint.

Cite this