Demonstration of high performance in a perovskite oxide supported solid oxide fuel cell based on La and Ca co-doped SrTiO3

Lanying Lu, Chengsheng Ni, Mark Cassidy, John T.S. Irvine

Research output: Contribution to journalArticlepeer-review

Abstract

Perovskite electrodes have been considered as an alternative to Ni-YSZ cermet-based anodes as they afford better tolerance towards coking and impurities and due to redox stability can allow very high levels of fuel utilisation. Unfortunately performance levels have rarely been sufficient, especially for a second generation anode supported concept. A-site deficient lanthanum and calcium co-doped SrTiO3, La0.2Sr0.25Ca0.45TiO3 (LSCTA-) shows promising thermal, mechanical and electrical properties and has been investigated in this study as a potential anode support material for SOFCs. Flat multilayer ceramics cells were fabricated by aqueous tape casting and co-sintering, comprising a 450 μm thick porous LSCTA- scaffold support, a dense YSZ electrolyte and a thin layer of La0.8Sr0.2CoO3-δ (LSC)-La0.8Sr0.2FeO3-δ (LSF)-YSZ cathode. Impregnation of a small content of Ni significantly enhanced fuel cell performance over naked LSCTA-. Use of ceria as a co-catalyst was found to improve the microstructure and stability of impregnated Ni and this in combination with the catalytic enhancement from ceria significantly improved performance over Ni impregnation alone. With addition of CeO2 and Ni to a titanate scaffold anode that had been pre-reduced at 1000 oC, a maximum powder density of 0.96 W cm-2 can be achieved at 800 oC using humidified hydrogen as fuel. The encouraging results show that an oxide anode material, LSCTA- can be used as anode support with YSZ electrolyte heralding a new option for SOFC development.
Original languageEnglish
Pages (from-to)11708-11718
Number of pages11
JournalJournal of Materials Chemistry
Volume4
Issue number30
Early online date28 Jun 2016
DOIs
Publication statusPublished - 14 Aug 2016

Fingerprint

Dive into the research topics of 'Demonstration of high performance in a perovskite oxide supported solid oxide fuel cell based on La and Ca co-doped SrTiO3'. Together they form a unique fingerprint.

Cite this