Projects per year
Abstract
We present an analytical method for determining incident and reflection co- efficients for flank ULF compressional waveguide modes in Earth’s magnetosphere. In the flank magnetosphere, compressional waves propagate azimuthally, but exhibit a mixed standing/propagating nature radially. Understanding this radial dependence will yield information on the energy absorption and transport of these waves. We provide a step by step method that can be applied to observations of flank ULF waves, which separates these fluctuations into incident and reflected parts. As a means of testing, we apply the method to data from a numerical waveguide simulation, which shows the effect on the reflection coefficient when energy is absorbed at a field line resonance.
Original language | English |
---|---|
Pages (from-to) | 3381-3394 |
Journal | Journal of Geophysical Research: Space Physics |
Volume | 121 |
Issue number | 4 |
Early online date | 25 Apr 2016 |
DOIs | |
Publication status | Published - Apr 2016 |
Fingerprint
Dive into the research topics of 'Deciphering satellite observations of compressional ULF waveguide modes'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Plasma Theory: Solar and Magnetospheric Plasma Theory
Hood, A. W. (PI), Mackay, D. H. (CoI), Neukirch, T. (CoI), Parnell, C. E. (CoI), Priest, E. (CoI), Archontis, V. (Researcher), Cargill, P. (Researcher), De Moortel, I. (Researcher) & Wright, A. N. (Researcher)
Science & Technology Facilities Council
1/04/13 → 31/03/16
Project: Standard