Abstract
The early Paleogene represents the most recent interval in Earth's history characterized by global greenhouse warmth on multi-million year timescales, yet our understanding of long-term climate and carbon cycle evolution in the low latitudes, and in particular the Indian Ocean, remains very poorly constrained. Here we present the first long-term sub-eccentricity-resolution stable isotope (δ13C and δ18O) and trace element (Mg/Ca and B/Ca) records spanning the late Paleocene-early Eocene (similar to 58-53 Ma) across a surface-deep hydrographic reconstruction of the northern Indian Ocean, resolving late Paleocene 405-kyr paced cyclicity and a portion of the PETM recovery. Our new records reveal a long-term warming of similar to 4-5 °C at all depths in the water column, with absolute surface ocean temperatures and magnitudes of warming comparable to the low latitude Pacific. As a result of warming, we observe a long-term increase in δ18Osw of the mixed layer, implying an increase in net evaporation. We also observe a collapse in the temperature gradient between mixed layer- and thermocline-dwelling species from similar to 57-54 Ma, potentially due to either the development of a more homogeneous water column with a thicker mixed layer, or depth migration of the Morozovellain response to warming. Synchronous warming at both low and high latitudes, along with decreasing B/Ca ratios in planktic foraminifera indicating a decrease in ocean pH and/or increasing dissolved inorganic carbon, suggest that global climate was forced by rising atmospheric CO2 concentrations during this time.
Original language | English |
---|---|
Article number | 116414 |
Number of pages | 15 |
Journal | Earth and Planetary Science Letters |
Volume | 545 |
Early online date | 18 Jun 2020 |
DOIs | |
Publication status | Published - 1 Sept 2020 |
Keywords
- Trace elements
- Paleoclimate
- Paleoceanography
- Paleogene
- Paleocene-Eocene Thermal Maximum
- Indian Ocean