Projects per year
Abstract
A finite group G is coprimely invariably generated if there exists a set of generators {g1,. .,gu} of G with the property that the orders |g1|,. .,|gu| are pairwise coprime and that for all x1,. .,xu∈G the set {g1x1,. .,guxu} generates G.
We show that if G is coprimely invariably generated, then G can be generated with three elements, or two if G is soluble, and that G has zero presentation rank. As a corollary, we show that if G is any finite group such that no proper subgroup has the same exponent as G, then G has zero presentation rank. Furthermore, we show that every finite simple group is coprimely invariably generated by two elements, except for O8+(2) which requires three elements.
Along the way, we show that for each finite simple group S, and for each partition π1,. .,πu of the primes dividing |S|, the product of the number kπi(S) of conjugacy classes of πi-elements satisfies. ∏i=1u kπi(S)≤|S|/2|OutS|.
We show that if G is coprimely invariably generated, then G can be generated with three elements, or two if G is soluble, and that G has zero presentation rank. As a corollary, we show that if G is any finite group such that no proper subgroup has the same exponent as G, then G has zero presentation rank. Furthermore, we show that every finite simple group is coprimely invariably generated by two elements, except for O8+(2) which requires three elements.
Along the way, we show that for each finite simple group S, and for each partition π1,. .,πu of the primes dividing |S|, the product of the number kπi(S) of conjugacy classes of πi-elements satisfies. ∏i=1u kπi(S)≤|S|/2|OutS|.
Original language | English |
---|---|
Pages (from-to) | 3453-3465 |
Number of pages | 13 |
Journal | Journal of Pure and Applied Algebra |
Volume | 219 |
Issue number | 8 |
Early online date | 12 Dec 2014 |
DOIs | |
Publication status | Published - Aug 2015 |
Fingerprint
Dive into the research topics of 'Coprime invariable generation and minimal-exponent groups'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Solving word problems: Solving word problems via generalisations of small cancellation
Roney-Dougal, C. (PI) & Neunhoeffer, M. (CoI)
1/10/11 → 30/09/14
Project: Standard