Projects per year
Abstract
Although the chemistry of copper has a long history [1a-d], the relatively recent discovery of N-heterocyclic carbene (NHC) as transition-metal supporting ligands has permitted novel vistas to be explored in copper reactivity and catalysis [1e,f]. Shortly after the seminal discovery of Arduengo, Raubenheimer reported a neutral copper carbene complex [1] and [2]. However, the field remained dormant for almost ten years. In the early 2000s, new breakthroughs were achieved: first, the synthesis of NHC–copper using Cu2O was reported by Danopoulos and followed by the first application in catalysis by Woodward [3] and [4]. The work by Buchwald and Sadighi appeared next, where the first catalysis using a well-defined complex was described [5].
The first reports in this field were based on systems used to mimic their phosphine relatives. NHCs have become ligands of significant interest due to their steric and electronic properties [6], [7] and [8]. Combining the NHC ligand family and copper became, for some, an obvious and productive area [6]. Over the last decade alone, numerous systems have been developed. Copper–NHC complexes can be divided into two major classes: neutral mono-NHC and cationic bis-NHC derivatives: [Cu(X)(NHC)] [9] (X = halide, acetate, hydroxide, hydride, etc.) and [Cu(NHC)(L)][Y] (L = NHC or PR3; Y = PF6, BF4) [10].
The neutral-halide-bearing complexes have been widely used in catalysis, mainly due to their ease of synthesis [9]. In addition to halide-bearing complexes, notable important related compounds have been reported: Nolan and co-workers disclosed the first hydroxide derivative [Cu(OH)(IPr)] (IPr = N,N’-bis(2,6-di-isopropylphenyl)imidazol-2-ylidene) and Sadighi published alkoxides, hydrides and borate species, which permitted novel reactivity to be explored [9g-i]. With respect to cationic derivatives, homoleptic and heteroleptic bis-NHC complexes have been reported and have been efficiently used in catalysis allowing important improvements [10]. In this review, an overview of the two classes and their respective catalytic performance will be presented.
Original language | English |
---|---|
Pages (from-to) | 48-79 |
Journal | Coordination Chemistry Reviews |
Volume | 293-294 |
Early online date | 4 Feb 2015 |
DOIs | |
Publication status | Published - 15 Jun 2015 |
Keywords
- Copper
- N-heterocyclic carbene
- Homogeneous catalysis
Fingerprint
Dive into the research topics of 'Copper-NHC complexes in catalysis'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Catalytic C-H bond functionalisation: Catalytic C-H bond functionalisation
Cazin, C. S. J. (PI)
1/10/11 → 6/05/17
Project: Fellowship