Controlling single molecule conductance by a locally induced chemical reaction on individual thiophene units

Tomasz Michnowicz, Bogdana Borca, Rémi Pétuya, Verena Schendel, Marcel Pristl, Ivan Pentegov, Ulrike Kraft, Hagen Klauk, Peter Wahl, Pingo Mutombo, Pavel Jelínek, Andrés Arnau, Uta Schlickum, Klaus Kern

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Among the prerequisites for the progress of single‐molecule‐based electronic devices are a better understanding of the electronic properties at the individual molecular level and the development of methods to tune the charge transport through molecular junctions. Scanning tunneling microscopy (STM) is an ideal tool not only for the characterization, but also for the manipulation of single atoms and molecules on surfaces. The conductance through a single molecule can be measured by contacting the molecule with atomic precision and forming a molecular bridge between the metallic STM tip electrode and the metallic surface electrode. The parameters affecting the conductance are mainly related to their electronic structure and to the coupling to the metallic electrodes. Here, the experimental and theoretical analyses are focused on single tetracenothiophene molecules and demonstrate that an in situ‐induced direct desulfurization reaction of the thiophene moiety strongly improves the molecular anchoring by forming covalent bonds between molecular carbon and copper surface atoms. This bond formation leads to an increase of the conductance by about 50 % compared to the initial state.
Original languageEnglish
Number of pages7
JournalAngewandte Chemie International Edition
VolumeIn press
Early online date18 Feb 2020
DOIs
Publication statusE-pub ahead of print - 18 Feb 2020

Keywords

  • Single-molecule conductance
  • Covalent-bond formation
  • Strong anchoring
  • STM/AFM
  • DFT

Fingerprint

Dive into the research topics of 'Controlling single molecule conductance by a locally induced chemical reaction on individual thiophene units'. Together they form a unique fingerprint.

Cite this