TY - JOUR
T1 - Contrasting observed atmospheric responses to tropical sea surface temperature warming patterns
AU - Mackie, Anna
AU - Brindley, Helen E.
AU - Palmer, Paul I.
N1 - AM was funded by a NERC doctoral training partnership grant (NE/L002558/1). This study was funded as part of NERC's support of the National Center for Earth Observation: HB and PIP were supported by grant number NE/R016518/1.
PY - 2021/4/1
Y1 - 2021/4/1
N2 - Equilibrium climate sensitivity (ECS) is a theoretical concept which describes the change in global mean surface temperature that results from a sustained doubling of atmospheric CO2. Current ECS estimates range from ∼1.8 to 5.6 K, reflecting uncertainties in climate feedbacks. The sensitivity of the lower (1,000–700 hPa) and upper (500–200 hPa) troposphere to changes in spatial patterns of tropical sea surface temperature (SST) have been proposed by recent model studies as key feedbacks controlling climate sensitivity. We examine empirical evidence for these proposed mechanisms using 14 years of satellite data. We examine the response of temperature and humidity profiles, clouds, and top‐of‐the‐atmosphere radiation to relative warming in tropical ocean regions when there is either strong convection or subsidence. We find warmer SSTs in regions of strong subsidence are coincident with a decrease in lower tropospheric stability (−0.9 ± 0.4 KK−1) and low cloud cover (∼−6% K−1). This leads to a warming associated with the weakening in the shortwave cooling effect of clouds (4.2 ± 1.9 Wm−2K−1), broadly consistent with model calculations. In contrast, warmer SSTs in regions of strong convection are coincident with an increase in upper tropospheric humidity (3.2 ± 1.5% K−1). In this scenario, the dominant effect is the enhancement of the warming longwave cloud radiative effect (3.8 ± 3.0 Wm−2K−1) from an increase in high cloud cover (∼7% K−1), though changes in the net (longwave and shortwave) effect are not statistically significant (p < 0.003). Our observational evidence supports the existence of mechanisms linking contrasting atmospheric responses to patterns in SST, mechanisms which have been linked to climate sensitivity.
AB - Equilibrium climate sensitivity (ECS) is a theoretical concept which describes the change in global mean surface temperature that results from a sustained doubling of atmospheric CO2. Current ECS estimates range from ∼1.8 to 5.6 K, reflecting uncertainties in climate feedbacks. The sensitivity of the lower (1,000–700 hPa) and upper (500–200 hPa) troposphere to changes in spatial patterns of tropical sea surface temperature (SST) have been proposed by recent model studies as key feedbacks controlling climate sensitivity. We examine empirical evidence for these proposed mechanisms using 14 years of satellite data. We examine the response of temperature and humidity profiles, clouds, and top‐of‐the‐atmosphere radiation to relative warming in tropical ocean regions when there is either strong convection or subsidence. We find warmer SSTs in regions of strong subsidence are coincident with a decrease in lower tropospheric stability (−0.9 ± 0.4 KK−1) and low cloud cover (∼−6% K−1). This leads to a warming associated with the weakening in the shortwave cooling effect of clouds (4.2 ± 1.9 Wm−2K−1), broadly consistent with model calculations. In contrast, warmer SSTs in regions of strong convection are coincident with an increase in upper tropospheric humidity (3.2 ± 1.5% K−1). In this scenario, the dominant effect is the enhancement of the warming longwave cloud radiative effect (3.8 ± 3.0 Wm−2K−1) from an increase in high cloud cover (∼7% K−1), though changes in the net (longwave and shortwave) effect are not statistically significant (p < 0.003). Our observational evidence supports the existence of mechanisms linking contrasting atmospheric responses to patterns in SST, mechanisms which have been linked to climate sensitivity.
KW - Climate sensitivity
KW - Satellite observations
KW - SST warming patterns
KW - Tropical atmostphere
U2 - 10.1029/2020JD033564
DO - 10.1029/2020JD033564
M3 - Article
SN - 2169-897X
VL - 126
JO - Journal of Geophysical Research: Atmospheres
JF - Journal of Geophysical Research: Atmospheres
IS - 7
M1 - e2020JD033564
ER -