Continuous Flow Hydroformylation of Alkenes in Supercritical Fluid-Ionic Liquid Biphasic Systems

P B Webb, M F Sellin, T E Kunene, S Williamson, Alexandra Martha Zoya Slawin, David John Cole-Hamilton

Research output: Contribution to journalArticlepeer-review

269 Citations (Scopus)


A process for the hydroformylation of relatively low volatility alkenes (demonstrated for 1-dodecene) in a continuous flow system is described. The catalyst is dissolved in an ionic liquid while the substrate and gaseous reagents are transported into the reactor dissolved in supercritical CO2, which simultaneously acts as a transport vector for aldehyde products. Decompression of the fluid mixture downstream yields products which are free of both reaction solvent and catalyst. The use of rhodium complexes of triaryl phosphites leads to ligand degradation through reaction of the ionic liquid with water and subsequent attack of the released HF on the phosphite. Sodium salts of sulfonated phosphines are insufficiently soluble in the ionic liquids to obtain acceptable rates, but replacing the sodium by a cation similar to that derived from the ionic liquid, allows good solubility and activity to be obtained. The nature of the ionic liquid is very important in achieving high rates, with 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)am ides giving the best activity if the alkyl chain is at least C-8. Catalyst turnover frequencies as high as 500 h(-1) have been observed, with the better rates at higher substrate flow rates. Rhodium leaching into the product stream can be as low as 0.012 ppm, except at low partial pressures of CO/H-2, when it is significantly higher. Oxygen impurities in the CO2 feed can lead to oxidation of the phosphine giving higher rates, lower selectivities to the linear aldehyde, increased alkene isomerization and greater leaching of rhodium. However, it is found that under certain process conditions, the supercritical fluid-ionic liquid (SCF-IL) system can be operated continuously for several weeks without any visible sign of catalyst degradation. Comparisons with commercial hydroformylation processes are provided.

Original languageEnglish
Pages (from-to)15577-15588
Number of pages12
JournalJournal of the American Chemical Society
Issue number50
Publication statusPublished - 17 Dec 2003


  • CO2


Dive into the research topics of 'Continuous Flow Hydroformylation of Alkenes in Supercritical Fluid-Ionic Liquid Biphasic Systems'. Together they form a unique fingerprint.

Cite this