TY - JOUR
T1 - Continuous Flow Hydroformylation of Alkenes in Supercritical Fluid-Ionic Liquid Biphasic Systems
AU - Webb, P B
AU - Sellin, M F
AU - Kunene, T E
AU - Williamson, S
AU - Slawin, Alexandra Martha Zoya
AU - Cole-Hamilton, David John
N1 - Reports the first continuous flow homogenous catalytic reaction. Uses supercritical fluids and ionic liquids. Preliminary communication has 108 citations. Referee: “This is a wonderful manuscript and I am delighted that I was allowed to referee it. I am very impressed by the combination of molecular understanding and engineering design, an area that is clearly defining the future of homogeneous catalysis”
PY - 2003/12/17
Y1 - 2003/12/17
N2 - A process for the hydroformylation of relatively low volatility alkenes (demonstrated for 1-dodecene) in a continuous flow system is described. The catalyst is dissolved in an ionic liquid while the substrate and gaseous reagents are transported into the reactor dissolved in supercritical CO2, which simultaneously acts as a transport vector for aldehyde products. Decompression of the fluid mixture downstream yields products which are free of both reaction solvent and catalyst. The use of rhodium complexes of triaryl phosphites leads to ligand degradation through reaction of the ionic liquid with water and subsequent attack of the released HF on the phosphite. Sodium salts of sulfonated phosphines are insufficiently soluble in the ionic liquids to obtain acceptable rates, but replacing the sodium by a cation similar to that derived from the ionic liquid, allows good solubility and activity to be obtained. The nature of the ionic liquid is very important in achieving high rates, with 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)am ides giving the best activity if the alkyl chain is at least C-8. Catalyst turnover frequencies as high as 500 h(-1) have been observed, with the better rates at higher substrate flow rates. Rhodium leaching into the product stream can be as low as 0.012 ppm, except at low partial pressures of CO/H-2, when it is significantly higher. Oxygen impurities in the CO2 feed can lead to oxidation of the phosphine giving higher rates, lower selectivities to the linear aldehyde, increased alkene isomerization and greater leaching of rhodium. However, it is found that under certain process conditions, the supercritical fluid-ionic liquid (SCF-IL) system can be operated continuously for several weeks without any visible sign of catalyst degradation. Comparisons with commercial hydroformylation processes are provided.
AB - A process for the hydroformylation of relatively low volatility alkenes (demonstrated for 1-dodecene) in a continuous flow system is described. The catalyst is dissolved in an ionic liquid while the substrate and gaseous reagents are transported into the reactor dissolved in supercritical CO2, which simultaneously acts as a transport vector for aldehyde products. Decompression of the fluid mixture downstream yields products which are free of both reaction solvent and catalyst. The use of rhodium complexes of triaryl phosphites leads to ligand degradation through reaction of the ionic liquid with water and subsequent attack of the released HF on the phosphite. Sodium salts of sulfonated phosphines are insufficiently soluble in the ionic liquids to obtain acceptable rates, but replacing the sodium by a cation similar to that derived from the ionic liquid, allows good solubility and activity to be obtained. The nature of the ionic liquid is very important in achieving high rates, with 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)am ides giving the best activity if the alkyl chain is at least C-8. Catalyst turnover frequencies as high as 500 h(-1) have been observed, with the better rates at higher substrate flow rates. Rhodium leaching into the product stream can be as low as 0.012 ppm, except at low partial pressures of CO/H-2, when it is significantly higher. Oxygen impurities in the CO2 feed can lead to oxidation of the phosphine giving higher rates, lower selectivities to the linear aldehyde, increased alkene isomerization and greater leaching of rhodium. However, it is found that under certain process conditions, the supercritical fluid-ionic liquid (SCF-IL) system can be operated continuously for several weeks without any visible sign of catalyst degradation. Comparisons with commercial hydroformylation processes are provided.
KW - RHODIUM-CATALYZED HYDROFORMYLATION
KW - CARBON-DIOXIDE
KW - TRIALKYLPHOSPHINE COMPLEXES
KW - HOMOGENEOUS CATALYSIS
KW - PHOSPHINE-LIGANDS
KW - MOBILE-PHASE
KW - CO2
KW - HYDROGENATION
KW - CARBONYLATION
KW - DENDRIMERS
UR - http://www.scopus.com/inward/record.url?scp=0346850021&partnerID=8YFLogxK
UR - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=14664605
U2 - 10.1021/ja035967s
DO - 10.1021/ja035967s
M3 - Article
SN - 0002-7863
VL - 125
SP - 15577
EP - 15588
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 50
ER -